矩阵求导与转置运算

线性代数补充

  • 矩阵转置
  • 矩阵求导

前言:在推导算法过程中遇到一些数学运算,遇到了就记录下,方便回忆


矩阵转置

( A + B ) T = A T + B T ( A B ) T = B T A T (A+B)^T = A^T+B^T \\ (AB)^T = B^TA^T (A+B)T=AT+BT(AB)T=BTAT

矩阵求导

∂ A x ∂ x = A T ∂ A x ∂ x T = A ∂ x T A ∂ x = A \frac{\partial Ax}{\partial x} = A^T \\ \frac{\partial Ax}{\partial x^T} = A \\ \frac{\partial x^TA}{\partial x} = A \\ xAx=ATxTAx=AxxTA=A
∂ x T A x ∂ x = ( A T + A ) x \frac{\partial x^TAx}{\partial x} = (A^T+A)x xxTAx=(AT+A)x若A是对称矩阵,即A^T = A,则:
∂ x T A x ∂ x = 2 A x \frac{\partial x^TAx}{\partial x} = 2Ax xxTAx=2Ax


参考:
向量,标量对向量求导数

你可能感兴趣的:(算法与数学,线性代数,矩阵求导,矩阵转置,矩阵)