- 【FPGA教程案例31】通信案例1——基于FPGA的ASK调制信号产生
fpga和matlab
★教程2:fpga入门100例fpga开发FPGA教程ASK调制verilog
FPGA教程目录MATLAB教程目录---------------------------------------------------------------------------------------目录1.软件版本2.ASK调制原理3.ASK调制过程的FPGA实现4.操作步骤与仿真结论5.参考文献1.软件版本vivado2019.22.ASK调制原理幅度键控(Amplitude-Shi
- 做电池寿命预测有福了---2024最新退化数据集,来自cell子刊
优化算法侠Swarm-Opti
深度学习数据集电池寿命预测深度学习人工智能
引言本期介绍2024年最新发表在cell子刊CellReportsPhysicalScience上的电池退化数据集。该数据集是世界上规模最大,最贴近实际运行场景,持续时间最长的电池退化数据集。在实验室和现实生活中对电池退化进行了为期4年的广泛实验调查,考虑了随机充放电电流、频率、深度以及多电池成组、环境温度的影响,涉及数百个电池和电池组的大约546,000次充放电循环。参考文献DongzhenLy
- 《基于机器学习的负荷曲线聚类算法对比与改进:K-L-isodata的创新性研究》
TWHiwhjig
机器学习算法聚类
基于机器学习的负荷曲线聚类包括kmeansisodata和改进的L-isodata以及在其基础上再次进行改进的K-L-isodata(有创新性),四者通过评价指标进行了对比精品代码可修改性极高有参考文献ID:93150688324967700自律的电气人基于机器学习的负荷曲线聚类是一种基于数据分析和模式识别的技术,它可以帮助我们对系统的负荷变化进行分类和理解。在负荷曲线聚类的研究中,K-means
- 【pytorch(cuda)】基于DQN算法的无人机三维城市空间航线规划(Python代码实现)
wlz249
pythonpytorch算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、DQN算法概述三、基于DQN的无人机三维航线规划方法1.环境建模2.状态与动作定义3.奖励函数设计4.深度神经网络训练5.航线规划四、研究挑战与展望2运行结果3参考文献4Python代码实现⛳️赠与读者做科研,涉及到一个深在的
- 如何在论文中添加参考文献引用(以Word2016为例)
韦_恩
windows日常使用总结officeword
相信很多同学在写论文时候的引用是手动自己加的吧?这样不是不行,就是万一某个引用变了就会导致牵一发动全身的问题,所以利用word中提供给你的方式就可以灵活动态添加引用,因为这个东西并不是天天用,所以很容易忘,今天来总结一下。目录1.自定义编号2.添加引用编号3.调整编号与内容之间的空隙4.在文中添加引用5.引用顺序变更后自动调整6.总结1.自定义编号定义新编号格式。在编号格式中加上文献引用的“[]”
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- 往adobe illustrator中添加latex字体
npupengsir
adobeillustratorui
找到如下字体所在路径/path/to/miktex/type1\public\amsfonts\cm然后copy相应的字体文件cmmi10.pfb将相应的pfb文件复制到Adobeillustrator字体文件夹:/path/to/illustrator/SupportFiles/Required/Fonts然后重启即可。
- 【大模型UI\多模型回复UI】
Ai君臣
LLMS微调ui大LLMSUI
文章目录1、开源大模型用户界面(UI)2、同时让多个模型回复UI1、开源大模型用户界面(UI)LobeChatOpenWebUI:这是一款功能丰富且用户友好的开源自托管AI界面,旨在完全离线运行。它支持多种大型语言模型(LLM),包括Ollama和兼容OpenAI的API。OpenWebUI提供直观的界面,支持多模型和多模态交互,具有全面的Markdown和LaTeX支持,以及本地RAG集成等功能
- 【机器学习】skit-learn中LSI模型的实现
一穷二白到年薪百万
机器学习pythonsklearn
参考文献[1]sklearn_api.lsimodel–ScikitlearnwrapperforLatentSemanticIndexing[2]Pythonmodels.LsiModel方法代码示例
- 数学建模之数学模型-3:动态规划
^ω^宇博
数学模型数学建模动态规划算法
文章目录动态规划基本概念阶段状态决策策略状态转移方程指标函数最优指标函数动态规划的求解前向算法后向算法二者比较应用案例一种中文分词的动态规划模型摘要引言动态规划的分词模型问题的数学描述消除状态的后效性选择优化条件算法描述和计算实例算法的效率分析和评价结束语参考文献动态规划基本概念一个多阶段决策过程最优化问题的动态规划模型包括以下666个要素:以下是对动态规划中阶段、状态、决策、策略、状态转移方程、
- TeXstudio 编写基本的 Latex (备忘)
波格斯特
Latex
目录0.TeXstudio设置1.基本页面简单的一个例子来点章节再加个简单封皮加个目录小细节0.TeXstudio设置保证为UTF-8在选项卡选项中设置编译器为XeLaTeX1.基本页面简单的一个例子\documentclass{ctexart}%使用中文版的article文档类型排版\begin{document}hello,world你好,世界\end{document}来点章节\docume
- .net 6程序在IIS中部署后点击IIS设置报错“执行此操作时出错”
gc_2299
程序问题解答.netIIS执行此操作时出错
.net6写的程序,需要在Windows服务器的IIS中部署,由于是刚装的系统,先安装.net6运行时,装了才发现没有IIS,于是又通过“添加角色和功能”添加与IIS相关的功能。安装完毕后,在IIS中添加网站,并将应用程序池设置为“无托管代码”,但是点击网站右侧的任一IIS设置时,都会报错“执行此操作时出错”(没有截图,报错内容类似下面第三个图,该图来自参考文献1)。 最开始以为是IIS安装
- mathpix snpping公式输入不限次数的方法
冰虺
编辑器
在写论文时,不可避免的需要输入大量的公式,为了减少公式输入所需的时间,mathpixsnpping这款软件,带来了极大的方便。仅需截图,就能快速输入好数学公式(化学式)。但由于已经过了推广的时期,该软件已经开始收费了!!!!!!为了不限次数输入,特地提供以下开源网站,供大家使用!!!!!使用方法:1、win+shift+s将公式截取复制到粘贴板2、打开以下网站在线LaTeX公式编辑器-编辑器3、将
- 智能优化算法:海洋捕食者算法
智能算法研学社(Jack旭)
智能优化算法算法机器学习神经网络
智能优化算法:海洋捕食者算法文章目录智能优化算法:海洋捕食者算法1.算法原理2.实验结果3.参考文献4.Matlab代码摘要:海洋捕食者算法(MarinePredatorsAlgorithm,MPA)是AfshinFaramarzi等人于2020年提出的一种新型元启发式优化算法,其灵感来源于海洋适者生存理论,即海洋捕食者通过在Lévy游走或布朗游走之间选择最佳觅食策略。具有寻优能力强等特点。1.算
- 向量空间与范数
Shockang
机器学习数学通关指南人工智能机器学习数学线性代数
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文一、向量空间:机器学习的舞台1.1定义与核心要素️向量空间是机器学习的数学基础,它提供了描述和处理高
- 互信息详解
Shockang
机器学习数学通关指南机器学习人工智能数学信息论
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》ima知识库知识库广场搜索:知识库创建人机器学习@Shockang机器学习数学基础@Shockang深度学习@Shockang正文互信息:变量间关联性的量化利器互信息(MutualInformation)是信息论中的核心概念,也是
- 《自然语言处理实战入门》深度学习 ---- 预训练模型初探
shiter
AI重制版】预训练NLP自然语言处理
文章大纲前言预训练模型简介语言表示学习神经上下文编码器为何需要预训练模型发展历史主流预训练模型预训练模型与分类将PTMs应用至下游任务微调策略未来研究方向参考文献前言随着深度学习的发展,各种神经网络被广泛用于解决自然语言处理(NLP)任务,如卷积神经网络(convolutionalneuralnetworks,CNNs)、递归神经网络(neuralnetworks,RNNs)、基于图的神经网络(g
- 【Latex】latex公式手册||积分公式表示||极限表达||矩阵的各种表达
zjoy_2233
效率技巧栏矩阵线性代数Latex数学高等数学学习python
为了能够更好地写数学讲义【费曼学习法,故学习Latex的记录】文章目录如何插入公式基础格式:基础符号上标理解:“^”下标:“_”根式分式①简单分式②多层分式多层分式的第二种写法(斜着的除法写法):函数表达对数绝对值积分不定积分定积分多重积分极限①一般极限②左右极限复杂极限练习求和和求积①求和②求积矩阵表示①无括号矩阵②圆括号矩阵③中括号矩阵④大括号⑤单竖线⑥双竖线分段函数(分类讨论需要)集合语言关
- 技术人实测 | 如何用AI工具2分钟突破知网AIGC检测线
LL06210721
人工智能AIGC
最近在GitHub发现个有意思的本地化算法工具,其核心是通过对抗式语义重组技术重构文本逻辑链。测试时发现:将GPT生成的论文导入后,系统会保留原始参考文献格式,同时用学术同义词替换引擎重写表达结构。实测数据:某985实验室的AI生成稿经处理,知网AIGC率从38%→9.7%(检测截图已脱敏),维普重复率从24%→8.3%。工具最实用的三个细节:保留公式编号和图表位置不变支持LaTeX源码级修改追踪
- 基于支持向量数据描述 (SVDD) 进行多类分类(Matlab代码实现)
荔枝科研社
分类matlab人工智能
个人主页:研学社的博客欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、SVDD算法原理三、基于SVDD的多类分类方法四、讨论与展望五、结论2运行结果3参考文献4Matlab代码实现1概述使用支持向量数据描述(SVDD)进行多类分类。矩阵代码。基于SVDD的多类分类在此MATLAB脚本中呈现。多类
- 【人工智能】随机森林的智慧:集成学习的理论与实践
蒙娜丽宁
人工智能人工智能随机森林集成学习
随机森林(RandomForest)是一种强大的集成学习算法,通过构建多棵决策树并结合投票或平均预测提升模型性能。本文深入探讨了随机森林的理论基础,包括决策树的构建、Bagging方法和特征随机选择机制,并通过LaTeX公式推导其偏差-方差分解和误差分析。接着,我们详细描述了随机森林的算法流程,分析其在分类和回归任务中的适用性。文章还通过实验对比随机森林与单一决策树及其他算法(如SVM)的性能,探
- AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(2.1-大模型发展历程 之 背景与开端)
shiter
AI重制版】人工智能系统解决方案与技术架构人工智能AIGC深度学习
文章大纲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型CV大模型科学计算大模型多模态大模型2022年是大模型技术的拐点,前期技术铺垫奠定了基础生成式模型的开端VAE与GANVAEGAN参考文献与学习路径GPT系列模型解析前序文章模型进化券商研报陆奇演讲按照目标不同,AI大模型可分为四类,多模态为未来方向NLP大模型自然语言处理(NaturalLanguageProcessing,
- WebGPT: 基于浏览器辅助的问答系统,结合人类反馈优化答案质量
土豆.exe
人工智能AI人工智能算法机器学习
【摘要】本论文介绍了WebGPT,这是一种通过浏览器辅助问答系统来使用人类反馈进行训练和优化的模型。具体来说,该系统通过与基于文本的网络浏览环境互动,使模型能够搜索和导航网络,从而提高其回答长文本问题的能力。通过将任务设计为人类可以完成的任务,研究人员能够利用模仿学习和人类反馈来训练和优化模型。主要贡献包括:创建了一个基于文本的网络浏览环境,使得模型可以互动,从而改进了检索和合成。生成带有参考文献
- 核函数及其常见类型
Shockang
机器学习数学通关指南机器学习人工智能数学线性代数概率统计
前言本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见《机器学习数学通关指南》正文核心概念核函数(KernelFunction)是机器学习中处理非线性可分数据的关键工具。它的核心思想是隐式映射:通过将数据从原始低维空间映射到高维空间,使得在高维空间中线性可分,从而无需显式计算高维映射,仅需在低维空间高效计算
- Mistral 发布 Mistral OCR,号称「世界上最好的 OCR 模型」
自不量力的A同学
ocr
Mistral发布的MistralOCR号称“世界上最好的OCR模型”,以下是对它的详细介绍:产品概述MistralOCR是一种光学字符识别API,以图像和PDF作为输入,可从有序交错的文本和图像中提取内容,能理解文档的每个元素,包括媒体、文本、表格、公式等,可与RAG系统结合,处理多模式文档。核心优势顶尖的复杂文档理解能力:可精准识别科学论文、技术文献中的图表、公式(含LaTeX)、表格及混合排
- 【C语言】位操作符详解 - 《开心消消乐》
LuckiBit
C语言c语言关键字位运算按位或按位与位操作符
目录1.介绍2.位操作符列表3.按位操作符详解3.1按位与(&)示例输出3.2按位或(|)示例输出3.3按位异或(^)示例输出3.4按位取反(~)示例输出按位取反操作符(~)示例输出按位取反操作符详细解释3.5左移(>)示例输出4.应用实例4.1使用位掩码示例输出4.2设置特定位示例输出4.3清除特定位示例输出4.4翻转特定位示例输出5.结论6.参考文献7.结束语1.介绍位操作符用于在位级别上进行
- 基于STM32+Qt上位机设计的智慧停车场管理系统(207)
DS小龙哥
智能家居与物联网项目实战stm32qt嵌入式硬件
文章目录一、前言1.1项目介绍【1】项目背景【2】设计实现的功能【3】项目硬件模块组成1.2设计思路1.3项目开发背景【1】选题的意义【2】可行性分析【3】摘要【4】系统整体架构设计【5】参考文献1.4开发工具的选择【1】设备端开发【2】上位机开发1.5系统功能总结1.6系统框架图1.7硬件原理图1.8硬件实物图二、硬件选项2.1OV7725摄像头2.2STM32开发板2.3舵机SG902.4稳压
- Opacus库快速上手!使用Opacus库在Mnist数据集实现差分隐私
还不秃顶的计科生
快捷操作编程技巧pycharm
第一部分:代码实现(1)基础配置python:3.8,opacus1.1.1,torch1.12.1pipinstallopacus==1.1.1具体实现方式是参考opacus官网以及(4)的参考文献。opacus官网为:GitHub-pytorch/opacus:使用差分隐私训练PyTorch模型(2)完整代码#-*-coding:utf-8-*-#Step1:导入必要的库和模块importto
- ZooKeeper 的 Watch 机制是什么?
Shockang
大数据技术体系大数据zookeeper
前言本文隶属于专栏《1000个问题搞定大数据技术体系》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢!本专栏目录结构和参考文献请见1000个问题搞定大数据技术体系正文Watch机制的简介ZooKeeper提供了分布式数据发布/订阅功能,一个典型的发布/订阅模型系统定义了一种一对多的订阅关系,能让多个订阅者同时监听某一个主题对象,当这个主题对象自身状态变化时,会通知所有订
- 基于MATLAB_Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢 附参考文献
qq924711725
MATLABmatlab开发语言
基于MATLAB/Simulink风光储与电解制氢系统仿真模型(光伏耦合PEM制氢)功率制氢附参考文献光储电解制氢模型,光伏制氢,电解槽恒功率制氢,光伏耦合PEM制氢,母线电压维持800V。光伏采用mppt最大功率跟踪;储能采用电压电流双闭环控制;电解槽采用功率外环加电流内环控制,恒功率制氢。光伏出力不足时,蓄电池出力,光伏出力充足时,蓄电池充电,波形稳定,运行完美。附相关参考文献。谢谢理解!好的
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,