深度学习:选择性搜索(Selective Search)

在目标检测时,为了定位到目标的具体位置,通常会把图像分成许多子块,然后把子块作为输入,送到目标识别的模型中。分子块的最直接方法叫滑动窗口法。滑动窗口的方法就是按照子块的大小在整幅图像上穷举所有子图像块。
和滑动窗口法相对的是另外一类基于区域(region proposal)的方法。selective search就是其中之一!
候选区域算法用分割不同区域的办法来识别潜在的物体。在分割的时候,我们要合并那些在某些方面(如颜色、纹理)类似的小区域。相比滑窗法在不同位置和大小的穷举,候选区域算法将像素分配到少数的分割区域中。所以最终候选区域算法产生的数量比滑窗法少的多,从而大大减少运行物体识别算法的次数。同时候选区域算法所选定的范围天然兼顾了不同的大小和长宽比。
选择性搜索算法使用《Efficient Graph-Based Image Segmentation》论文里的方法产生初始的分割区域作为输入,通过下面的步骤进行合并:

  1. 首先将所有分割区域的外框加到候选区域列表中
  2. 基于相似度合并一些区域
  3. 将合并后的分割区域作为一个整体,跳到步骤1

通过不停的迭代,候选区域列表中的区域越来越大。可以说,我们通过自底向下的方法创建了越来越大的候选区域。表示效果如下:深度学习:选择性搜索(Selective Search)_第1张图片
从最底层的图像特征,逐渐合并相似区域,最终生成候选区域。
相似度
选择性搜索算法如何计算两个区域的相似度的呢?
主要是通过以下四个方面:颜色、纹理、大小和形状交叠
最终的相似度是这四个值取不同的权重相加。
笔记学习地址

你可能感兴趣的:(计算机视觉)