code1
import tensorflow as tf
import numpy as np
import input_data
import matplotlib.pyplot as plt
# 启用动态图机制
tf.enable_eager_execution()
#调用input_data.py中的read_data_sets函数获取数据
mnist_data = input_data.read_data_sets('mnist_data/', one_hot=False)
train_images = mnist_data.train.images
train_labels = mnist_data.train.labels
test_images = mnist_data.test.images
test_labels = mnist_data.test.labels
#tf.keras.Input函数用于向模型中输入数据,并指定数据的形状、数据类型等信息。
input_ = tf.keras.Input(shape=(784, ))
fc1 = tf.keras.layers.Dense(128, activation='tanh')(input_)
fc2 = tf.keras.layers.Dense(32, activation='tanh')(fc1)
out = tf.keras.layers.Dense(1)(fc2)
# 使用inputs与outputs建立函数链式模型;
model = tf.keras.Model(inputs=input_, outputs=out)
#使用keras构建深度学习模型,我们会通过model.summary()输出模型各层的参数状况
model.summary()
#构建模型后,通过调用compile方法配置其训练过程:
model.compile(loss='mse',optimizer='adam')#mean_squared_error=mse
# 顾名思义,意为均方误差,也称标准差,缩写为MSE,可以反映一个数据集的离散程度。
#标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。
# model.compile (optimizer=Adam(lr=1e-4), loss=’binary_crossentropy’, metrics=[‘accuracy’])
#模型拟合
model.fit(x=train_images, y=train_labels, epochs=5)
for i in range(10):
#tf.expand_dims用来增加维度,
pred = model(tf.expand_dims(test_images[i], axis=0))
img = np.reshape(test_images[i], (28, 28))
lab = test_labels[i]
print('真实标签: ', lab, ', 网络预测: ', pred.numpy())
plt.imshow(img)
plt.show()
#
# import tensorflow.examples.tutorials.mnist.input_data as input_data
# mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#
# x = tf.placeholder(tf.float32, [None, 784])
# W = tf.Variable(tf.zeros([784,10]))
# b = tf.Variable(tf.zeros([10])+0.1)
# y = tf.nn.softmax(tf.matmul(x,W) + b)
#
# y_ = tf.placeholder("float", [None,10])
#
# cross_entropy = -tf.reduce_sum(y_*tf.log(y))
#
# train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#
# init = tf.global_variables_initializer()
#
# sess = tf.Session()
# sess.run(init)
#
# for i in range(1000):
# batch_xs, batch_ys = mnist.train.next_batch(100)
# sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
#
# correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
#
# accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#
# print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
code2
import tensorflow as tf
import numpy as np
import input_data
import matplotlib.pyplot as plt
# 启用动态图机制,不可删除
tf.enable_eager_execution()
mnist_data = input_data.read_data_sets('mnist_data', one_hot=False)
train_images = mnist_data.train.images
train_labels = mnist_data.train.labels
test_images = mnist_data.test.images
test_labels = mnist_data.test.labels
input_ = tf.keras.Input(shape=(784, ))
dense = tf.keras.layers.Dense(128, activation='tanh')(input_)
out = tf.keras.layers.Dense(10, activation='softmax')(dense)
model = tf.keras.Model(inputs=input_, outputs=out)
model.summary()
model.compile(loss=tf.keras.losses.sparse_categorical_crossentropy,optimizer='adam', metrics=['accuracy'])
model.fit(x=train_images, y=train_labels, epochs=5)
for i in range(10):
pred = model(tf.expand_dims(test_images[i], axis=0))
img = np.reshape(test_images[i], (28, 28))
lab = test_labels[i]
print('真实标签: ', lab, ', 网络预测: ', np.argmax(pred.numpy()))
'''
import numpy as np
a = np.array([3, 1, 2, 4, 6, 1])
b=np.argmax(a)#取出a中元素最大值所对应的索引,此时最大值位6,其对应的位置索引值为4,(索引值默认从0开始)
print(b)#4
'''
plt.imshow(img)
plt.show()
input_data
# #!/usr/bin/python
# # coding:utf-8input_data
# 用于下载和读取MNIST数据的函数
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
from six.moves import urllib
from six.moves import xrange # pylint: disable=redefined-builtin
import tensorflow as tf
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
# 若数据不存在,则从Yann的网站下载数据
def maybe_download(filename, work_directory):
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
# 若指定路径不存在,则开始从原网站上下载
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
# 将图像提取到一个4维uint8类型的numpy数组[index, y, x, depth]
def extract_images(filename):
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number %d in MNIST image file: %s' % (magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data
# 将类标签从标量转换为一个one-hot向量
def dense_to_one_hot(labels_dense, num_classes=10):
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
# 将标签提取到一维uint8类型的numpy数组[index]中
def extract_labels(filename, one_hot=False):
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError('Invalid magic number %d in MNIST label file: %s' % (magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
# 构造DataSet类
# one_hot arg仅在fake_data为true时使用
# `dtype`可以是`uint8`,将输入保留为`[0,255]`,或`float32`以重新调整为[0,1]。
class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False, dtype=tf.float32):
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' % dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], ('images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
self._num_examples = images.shape[0]
# 将[num examples, rows, columns, depth]转换形状成[num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0], images.shape[1] * images.shape[2])
if dtype == tf.float32:
# 将[0, 255]转换为[0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
# 从数据集返回下一个`batch_size`示例
def next_batch(self, batch_size, fake_data=False):
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in xrange(batch_size)], [fake_label for _ in xrange(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
# 完成一个epoch
if self._index_in_epoch > self._num_examples:
# 随机抽取数据
self._epochs_completed += 1
perm = numpy.arange(self._num_examples)
numpy.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# 开始下一个epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
# 读取训练数据
def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32):
class DataSets(object):
pass
data_sets = DataSets()
# 若fake_data为true则返回空数据
if fake_data:
def fake():
return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype)
data_sets.train = fake()
data_sets.validation = fake()
data_sets.test = fake()
return data_sets
# 训练和测试数据文件名
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
# 读取训练和测试数据
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
# 取前5000个作为验证数据
validation_images = train_images[:VALIDATION_SIZE]
validation_labels = train_labels[:VALIDATION_SIZE]
# 取前5000个以后的作为训练数据
train_images = train_images[VALIDATION_SIZE:]
train_labels = train_labels[VALIDATION_SIZE:]
# 定义训练,验证和测试
data_sets.train = DataSet(train_images, train_labels, dtype=dtype)
data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype)
data_sets.test = DataSet(test_images, test_labels, dtype=dtype)
return data_sets