1123 Is It a Complete AVL Tree(30 分)

1123 Is It a Complete AVL Tree(30 分)
An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.

1123 Is It a Complete AVL Tree(30 分)_第1张图片

Now given a sequence of insertions, you are supposed to output the level-order traversal sequence of the resulting AVL tree, and to tell if it is a complete binary tree.

Input Specification:
Each input file contains one test case. For each case, the first line contains a positive integer N (≤ 20). Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.

Output Specification:
For each test case, insert the keys one by one into an initially empty AVL tree. Then first print in a line the level-order traversal sequence of the resulting AVL tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line. Then in the next line, print YES if the tree is complete, or NO if not.

Sample Input 1:

5
88 70 61 63 65

Sample Output 1:

70 63 88 61 65
YES

Sample Input 2:

8
88 70 61 96 120 90 65 68

Sample Output 2:

88 65 96 61 70 90 120 68
NO

考点:

1、AVL树的建立(参照1066);

2、完全二叉树的判断

3、完全二叉树的层次遍历。

本题中建立AVL树后,直接用DFS进行层次遍历,直接假定他为完全二叉树,则左右孩子的节点的标号与节点的关系为2index和2index+1;在判断是否为完全二叉树,只要看遍历的数组中有无空则可以判断。

#include 
#include 
using namespace std;
vector<int>level(205, -1);
struct node{
	int value;
	node *left, *right;
	node(int x): value(x), left(nullptr), right(nullptr){};
};
node *rotateL(node *root){
	node *temp = root->right;
	root->right = temp->left;
	temp->left = root;
	return temp; 
}
node *rotateR(node *root){
	node *temp = root->left;
	root->left = temp->right;
	temp->right = root;
	return temp;
}
node *rotateLR(node *root){
	root->left = rotateL(root->left);
	return rotateR(root);
}
node *rotateRL(node *root){
	root->right = rotateR(root->right);
	return rotateL(root);
}
int getHeight(node *root){
	if(root == nullptr)
		return 0;
	return max(getHeight(root->right), getHeight(root->left)) + 1;
}
node *insert(node *root, int val){
	if(root == nullptr)
		root = new node(val);
	else if(root->value > val){
		root->left = insert(root->left, val);
		if(getHeight(root->left) - getHeight(root->right) == 2)
			root = val < root->left->value ? rotateR(root) : rotateLR(root);
	}
	else{
		root->right = insert(root->right, val);
		if(getHeight(root->right) - getHeight(root->left) == 2)
			root = val > root->right->value ? rotateL(root) : rotateRL(root);
	}
	return root;
}
void dfs(node *root, int index){
	if(root == nullptr)
		return;
	level[index] = root->value;
	dfs(root->left, 2 * index);
	dfs(root->right, 2 * index + 1);
}
int main(){
	int n, temp, cur = 2;
	node *root = nullptr;
	scanf("%d", &n);
	for(int i = 0; i < n; ++ i){
		scanf("%d", &temp);
		root = insert(root, temp);
	}
	dfs(root, 1);
	bool flag = true;
	printf("%d", level[1]);
	for(int i = 1; i < n; ++ i){
		while(level[cur] == -1){
			++ cur;
			flag = false;
		}
		printf(" %d", level[cur ++]);
	}
	printf("\n%s",flag == true ? "YES" : "NO");
}

你可能感兴趣的:(PAT算法笔记)