笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)

- 卷积神经网络基础

- 卷积层

- 1 × \boldsymbol\times × 1 卷积层

形状为 1 × 1 1 \times 1 1×1的卷积核,我们通常称这样的卷积运算为 1 × 1 1 \times 1 1×1卷积,称包含这种卷积核的卷积层为 1 × 1 1 \times 1 1×1卷积层。

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第1张图片
1 × 1 1 \times 1 1×1卷积核可在不改变高宽的情况下,调整通道数。 1 × 1 1 \times 1 1×1卷积核不识别高和宽维度上相邻元素构成的模式,其主要计算发生在通道维上。假设我们将通道维当作特征维,将高和宽维度上的元素当成数据样本,那么 1 × 1 1 \times 1 1×1卷积层的作用与全连接层等价。

- 二位卷积层

- 二维互相关运算

输入一个二维输入数组然后与一个二维核数组相乘得到的数字填入输出数组所对应的位置。
这种核数组一般称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第2张图片
我们一般使用corr2d函数来实现二维互相关运算
输入数组X与核数组K,并输出数组Y

def corr2d(X, K):
    H, W = X.shape
    h, w = K.shape
    Y = torch.zeros(H - h + 1, W - w + 1)
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum()
    return Y

- 二维卷积层

二维卷积层将输入和卷积核做互相关运算,并加上一个标量偏置来得到输出。卷积层的模型参数包括卷积核和标量偏置。

class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super(Conv2D, self).__init__()
        self.weight = nn.Parameter(torch.randn(kernel_size))
        self.bias = nn.Parameter(torch.randn(1))
    def forward(self, x):
        return corr2d(x, self.weight) + self.bias

- 互相关运算与卷积运算

卷积层得名于卷积运算,但卷积层中用到的并非卷积运算而是互相关运算。我们将核数组上下翻转、左右翻转,再与输入数组做互相关运算,这一过程就是卷积运算。由于卷积层的核数组是可学习的,所以使用互相关运算与使用卷积运算并无本质区别。

- 特征图与感受野

二维卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。影响元素 x x x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做 x x x的感受野(receptive field)。

- 池化层

- 二维池化层

池化层主要用于缓解卷积层对位置的过度敏感性。同卷积层一样,池化层每次对输入数据的一个固定形状窗口(又称池化窗口)中的元素计算输出,池化层直接计算池化窗口内元素的最大值或者平均值,该运算也分别叫做最大池化或平均池化。
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第3张图片

二维平均池化的工作原理与二维最大池化类似,但将最大运算符替换成平均运算符。池化窗口形状为 p × q p \times q p×q的池化层称为 p × q p \times q p×q池化层,其中的池化运算叫作 p × q p \times q p×q池化。

池化层也可以在输入的高和宽两侧填充并调整窗口的移动步幅来改变输出形状。池化层填充和步幅与卷积层填充和步幅的工作机制一样。

在处理多通道输入数据时,池化层对每个输入通道分别池化,但不会像卷积层那样将各通道的结果按通道相加。这意味着池化层的输出通道数与输入通道数相等。

forward函数的参数为一个四维张量,形状为 ( N , C i n , H i n , W i n ) (N, C_{in}, H_{in}, W_{in}) (N,Cin,Hin,Win),返回值也是一个四维张量,形状为 ( N , C i n , H i n , W i n ) (N, C_{in}, H_{in}, W_{in}) (N,Cin,Hin,Win),其中 N N N是批量大小, C , H , W C,H,W C,H,W分别表示通道数、高度、宽度。
实现

X = torch.arange(32, dtype=torch.float32).view(1, 2, 4, 4)
pool2d = nn.MaxPool2d(kernel_size=3, padding=1, stride=(2, 1))
Y = pool2d(X)
print(X)
print(Y)

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第4张图片

- 填充和步幅

卷积层的两个超参数,填充和步幅
对给定形状的输入和卷积核改变输出形状。

- 填充

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第5张图片
如果原输入的高和宽是 n h n_h nh n w n_w nw,卷积核的高和宽是 k h k_h kh k w k_w kw,在高的两侧一共填充 p h p_h ph行,在宽的两侧一共填充 p w p_w pw列,则输出形状为:
( n h + p h − k h + 1 ) × ( n w + p w − k w + 1 ) (n_h+p_h-k_h+1)\times(n_w+p_w-k_w+1) (nh+phkh+1)×(nw+pwkw+1)

- 步幅

在互相关运算中,卷积核在输入数组上滑动,每次滑动的行数与列数即是步幅(stride)。
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第6张图片
一般来说,当高上步幅为 s h s_h sh,宽上步幅为 s w s_w sw时,输出形状为:
⌊ ( n h + p h − k h + s h ) / s h ⌋ × ⌊ ( n w + p w − k w + s w ) / s w ⌋ \lfloor(n_h+p_h-k_h+s_h)/s_h\rfloor \times \lfloor(n_w+p_w-k_w+s_w)/s_w\rfloor (nh+phkh+sh)/sh×(nw+pwkw+sw)/sw
如果 p h = k h − 1 p_h=k_h-1 ph=kh1 p w = k w − 1 p_w=k_w-1 pw=kw1,那么输出形状将简化为 ⌊ ( n h + s h − 1 ) / s h ⌋ × ⌊ ( n w + s w − 1 ) / s w ⌋ \lfloor(n_h+s_h-1)/s_h\rfloor \times \lfloor(n_w+s_w-1)/s_w\rfloor (nh+sh1)/sh×(nw+sw1)/sw。更进一步,如果输入的高和宽能分别被高和宽上的步幅整除,那么输出形状将是 ( n h / s h ) × ( n w / s w ) (n_h / s_h) \times (n_w/s_w) (nh/sh)×(nw/sw)

p h = p w = p p_h=p_w=p ph=pw=p时,我们称填充为 p p p;当 s h = s w = s s_h=s_w=s sh=sw=s时,我们称步幅为 s s s

- 多输入通道和多输出通道

之前的输入和输出都是二维数组,但真实数据的维度经常更高。
举个例子,彩色图像除了 h h h w w w以外还有RGB(工业界的一种颜色标准,是通过对红®、绿(G)、蓝(B)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的)那么就可以表示为一个 3 × h × w 3 \times h \times w 3×h×w的多维数组,我们将大小为3的这一维称为通道(channel)维。

- 多输入通道

卷积层的输入可以包含多个通道
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第7张图片
假设输入数据的通道数为 c i c_i ci,卷积核形状为 k h × k w k_h \times k_w kh×kw,我们为每个输入通道各分配一个形状为 k h × k w k_h \times k_w kh×kw的核数组,将 c i c_i ci个互相关运算的二维输出按通道相加,得到一个二维数组作为输出。我们把 c i c_i ci个核数组在通道维上连结,即得到一个形状为 c i × k h × k w c_i \times k_h \times k_w ci×kh×kw的卷积核。

- 多输出通道

卷积层的输出也可以包含多个通道,设卷积核输入通道数和输出通道数分别为 c i c_i ci c o c_o co,高和宽分别为 k h k_h kh k w k_w kw。如果希望得到含多个通道的输出,我们可以为每个输出通道分别创建形状为 c i × k h × k w c_i \times k_h \times k_w ci×kh×kw的核数组,将它们在输出通道维上连结,卷积核的形状即 c o × c i × k h × k w c_o \times c_i \times k_h \times k_w co×ci×kh×kw

对于输出通道的卷积核,我们提供这样一种理解,一个 c i × k h × k w c_i \times k_h \times k_w ci×kh×kw的核数组可以提取某种局部特征,但是输入可能具有相当丰富的特征,我们需要有多个这样的 c i × k h × k w c_i \times k_h \times k_w ci×kh×kw的核数组,不同的核数组提取的是不同的特征。

- 卷积层与全连接层的对比

  1. 全连接层把图像展平成一个向量,在输入图像上相邻的元素可能因为展平操作不再相邻,网络难以捕捉局部信息。而卷积层的设计,天然地具有提取局部信息的能力。
  2. 卷积层的参数量更少。不考虑偏置的情况下,一个形状为 ( c i , c o , h , w ) (c_i, c_o, h, w) (ci,co,h,w)的卷积核的参数量是 c i × c o × h × w c_i \times c_o \times h \times w ci×co×h×w,与输入图像的宽高无关。假如一个卷积层的输入和输出形状分别是 ( c 1 , h 1 , w 1 ) (c_1, h_1, w_1) (c1,h1,w1) ( c 2 , h 2 , w 2 ) (c_2, h_2, w_2) (c2,h2,w2),如果要用全连接层进行连接,参数数量就是 c 1 × c 2 × h 1 × w 1 × h 2 × w 2 c_1 \times c_2 \times h_1 \times w_1 \times h_2 \times w_2 c1×c2×h1×w1×h2×w2。使用卷积层可以以较少的参数数量来处理更大的图像。

实现
forward函数的参数为一个四维张量,形状为 ( N , C i n , H i n , W i n ) (N, C_{in}, H_{in}, W_{in}) (N,Cin,Hin,Win),返回值也是一个四维张量,形状为 ( N , C i n , H i n , W i n ) (N, C_{in}, H_{in}, W_{in}) (N,Cin,Hin,Win),其中 N N N是批量大小, C , H , W C,H,W C,H,W分别表示通道数、高度、宽度。

X = torch.rand(4, 2, 3, 5)
print(X.shape)
conv2d = nn.Conv2d(in_channels=2, out_channels=3, kernel_size=(3, 5), stride=1, padding=(1, 2))
Y = conv2d(X)
print('Y.shape: ', Y.shape)
print('weight.shape: ', conv2d.weight.shape)
print('bias.shape: ', conv2d.bias.shape)

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第8张图片

- leNet

- Convulotional Neural Networks

卷积神经网络(Convolutional Neural Network),更普遍的被称为CNN

- 卷积层相较于全链接层的优势

  1. 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  2. 对于大尺寸的输入图像,使用全连接层容易导致模型过大。
  3. 卷积层保留输入形状。
  4. 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

- LeNet模型

LeNet包含着卷积层块和全连接层块两个部分
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第9张图片
卷积层块的基本单位是卷积层后接平均池化层:
卷积层用来识别图像里的空间模式,比如说线条和物体局部,然后用平均池化层来降低卷积层对位置的敏感性。
卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用 5 × 5 5 \times 5 5×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。

全连接层块由三个全连接层组成。这三个全连接层的输出个数分别为120、84、10,其中10为输出类别的个数。

- LeNet的Sequential类的基本实现

#net
class Flatten(torch.nn.Module):  #展平操作
    def forward(self, x):
        return x.view(x.shape[0], -1)

class Reshape(torch.nn.Module): #将图像大小重定型
    def forward(self, x):
        return x.view(-1,1,28,28)      #(B x C x H x W)
    
net = torch.nn.Sequential(     #Lelet                                                  
    Reshape(),
    nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2), #b*1*28*28  =>b*6*28*28
    nn.Sigmoid(),                                                       
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*6*28*28  =>b*6*14*14
    nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5),           #b*6*14*14  =>b*16*10*10
    nn.Sigmoid(),
    nn.AvgPool2d(kernel_size=2, stride=2),                              #b*16*10*10  => b*16*5*5
    Flatten(),                                                          #b*16*5*5   => b*400
    nn.Linear(in_features=16*5*5, out_features=120),
    nn.Sigmoid(),
    nn.Linear(120, 84),
    nn.Sigmoid(),
    nn.Linear(84, 10)
)

接下来我们构造一个高和宽均为28的单通道数据样本,并逐层进行前向计算来查看每个层的输出形状。

#print
X = torch.randn(size=(1,1,28,28), dtype = torch.float32)
for layer in net:
    X = layer(X)
    print(layer.__class__.__name__,'output shape: \t',X.shape)

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第10张图片
在卷积层块中输入的高和宽在逐层减小。卷积层由于使用 5 × 5 5 \times 5 5×5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第11张图片

总而言之,卷积神经网络就是含卷积层的网络。 LeNet交替使用卷积层和最大池化层后接全连接层来进行图像分类。

- 卷积神经网络进阶

-深度卷积神经网络(AlexNet)

深度卷积神经网络相较于LeNet有着较大的优势
这是因为LeNet:在大的真实数据集上的表现并不尽如⼈意。

  1. 神经网络计算复杂
  2. 还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。

与此同时在特征提取方面,机器学习和神经网络是不同的

  • 机器学习:手工定义的特征提取函数
  • 神经网络:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。

AlexNet最大的优势就是证明了学习到的特征值可以超越手工设计的特征,从而打破了CV研究的状况。
而AlexNet的主要特征是:

  1. 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。
  2. 将sigmoid激活函数改成了更加简单的ReLU激活函数。
  3. 用Dropout来控制全连接层的模型复杂度。
  4. 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第12张图片

-AlexNet模型

import time
import torch
from torch import nn, optim
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input/") 
import d2lzh1981 as d2l
import os
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

class AlexNet(nn.Module):
    def __init__(self):
        super(AlexNet, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(1, 96, 11, 4), # in_channels, out_channels, kernel_size, stride, padding
            nn.ReLU(),
            nn.MaxPool2d(3, 2), # kernel_size, stride
            # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
            nn.Conv2d(96, 256, 5, 1, 2),
            nn.ReLU(),
            nn.MaxPool2d(3, 2),
            # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
            # 前两个卷积层后不使用池化层来减小输入的高和宽
            nn.Conv2d(256, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 384, 3, 1, 1),
            nn.ReLU(),
            nn.Conv2d(384, 256, 3, 1, 1),
            nn.ReLU(),
            nn.MaxPool2d(3, 2)
        )
         # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        self.fc = nn.Sequential(
            nn.Linear(256*5*5, 4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            #由于使用CPU镜像,精简网络,若为GPU镜像可添加该层
            #nn.Linear(4096, 4096),
            #nn.ReLU(),
            #nn.Dropout(0.5),

            # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
            nn.Linear(4096, 10),
        )

    def forward(self, img):

        feature = self.conv(img)
        output = self.fc(feature.view(img.shape[0], -1))
        return output
net = AlexNet()
print(net)

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第13张图片

- 使用重复元素的网络(VGG)

VGG:通过重复使用简单的基础块来构建深度模型
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第14张图片
卷积层保持输入的宽和高不变,池化层减半

def vgg_block(num_convs, in_channels, out_channels): #卷积层个数,输入通道数,输出通道数
    blk = []
    for i in range(num_convs):
        if i == 0:
            blk.append(nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 这里会使宽高减半
    return nn.Sequential(*blk)

框架的显示是这样的

Sequential(
(vgg_block_1): Sequential(
(0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(vgg_block_2): Sequential(
(0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(vgg_block_3): Sequential(
(0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU()
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(vgg_block_4): Sequential(
(0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU()
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(vgg_block_5): Sequential(
(0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(1): ReLU()
(2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(3): ReLU()
(4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
)
(fc): Sequential(
(0): FlattenLayer()
(1): Linear(in_features=3136, out_features=512, bias=True)
(2): ReLU()
(3): Dropout(p=0.5, inplace=False)
(4): Linear(in_features=512, out_features=512, bias=True)
(5): ReLU()
(6): Dropout(p=0.5, inplace=False)
(7): Linear(in_features=512, out_features=10, bias=True)
)
)

- 网络中的网络NiN

NiN与之前的模型都不同
LeNet、AlexNet和VGG:先以由卷积层构成的模块充分抽取 空间特征,再以由全连接层构成的模块来输出分类结果。
NiN:串联多个由卷积层和“全连接”层构成的小⽹络来构建⼀个深层⽹络。
⽤了输出通道数等于标签类别数的NiN块,然后使⽤全局平均池化层对每个通道中所有元素求平均并直接⽤于分类。

笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第15张图片
1 × 1 1 \times 1 1×1的卷积核作用

  1. 放缩通道数:通过控制卷积核的数量达到通道数的放缩
  2. 增加非线性。 1 × 1 1 \times 1 1×1卷积核的卷积过程相当于全连接层的计算过程,并且还加入了非线性激活函数,从而增加了网络的非线性
  3. 计算参数少
class GlobalAvgPool2d(nn.Module):
    # 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现
    def __init__(self):
        super(GlobalAvgPool2d, self).__init__()
    def forward(self, x):
        return F.avg_pool2d(x, kernel_size=x.size()[2:])

net = nn.Sequential(
    nin_block(1, 96, kernel_size=11, stride=4, padding=0),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(96, 256, kernel_size=5, stride=1, padding=2),
    nn.MaxPool2d(kernel_size=3, stride=2),
    nin_block(256, 384, kernel_size=3, stride=1, padding=1),
    nn.MaxPool2d(kernel_size=3, stride=2), 
    nn.Dropout(0.5),
    # 标签类别数是10
    nin_block(384, 10, kernel_size=3, stride=1, padding=1),
    GlobalAvgPool2d(), 
    # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
    d2l.FlattenLayer())
  • NiN重复使⽤由卷积层和代替全连接层的1×1卷积层构成的NiN块来构建深层⽹络。
  • NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数 的NiN块和全局平均池化层。
  • NiN的以上设计思想影响了后⾯⼀系列卷积神经⽹络的设计。

- GoogleNet

  • 由Inception基础块组成。
class Inception(nn.Module):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)

    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出
  • Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  • 可以⾃定义的超参数是每个层的输出通道数,可以通过这个控制模型复杂度。
    笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第16张图片

- GoogleNet模型

完整模型结构:
笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶)_第17张图片

你可能感兴趣的:(笔记:动手学深度学习pytorch(卷积神经网络基础;leNet;卷积神经网络进阶))