有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python

如果你对数据分析有一定的了解,那你一定听说过一些亲民好用的数据分析的工具,如Excel、Tableau、PowerBI等等等等,它们都是数据分析的得力助手。像经常使用这些根据的伙伴肯定也有苦恼的时候,不足之处也是显而易见:操作繁琐,复用性差,功能相对局限单一。

很多经常会用到数据分析的伙伴会问有没有一款便捷好用的工具!肯定有啊,Python的出现和普及,很容易就能改变这些窘境!

怎么解决呢?——Python

Python有很多优点,如果你能很好的运用到工作中,会发现工作效率大大提升,涨薪也是再正常不过的事情。

Python优点一:

“流程可控,工作高效”

举个例子,Excel做分析的过程:定位空值-删除空值-修改数据格式-去除异常值-公式计算-数据透视表-整理数据-插入图表-调整结果……

繁琐的每一步都是来自鼠标点击,中间如果一步有误,很多步骤都需要重新调整,浪费大量时间。

用Excel进行简单的描述统计分析,每换一份数据都需要重新操作一遍。

但使用Python编写每一步过程就非常方便,统一语言带来记录方法的统一。当分析过程需要修改或者复用,只需要调整设定好的参数就可以
有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python_第1张图片
使用Python代码可以迅速调用数据,计算需求,并记录每一步过程,方便修改。

如果想做出各种好看的图表,使用Python可视化类工具就可以,几行代码,省时省力,还具有交互功能。如果需要调整也只要修改代码,不用费心费力重新做图。

有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python_第2张图片
Python优点二:
“工具库丰富”

Python超高的人气带来了大量的大神,Python工具库可谓应有尽有,也为Python用途广泛打下了优秀的基础。

拿数据分析来说,以Python可视化必知基本库matplotlib为例,光是官方gallery就有26个大类527个样式,无论是数量还是质量都能碾压市面上大部分同功能软件。
有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python_第3张图片
Python优点三:
“小白友好,易上手”

听到Python,大家觉得是门编程语言,很多人就会有这样的顾虑:我是非计算机相关专业出身,学习Python编程是不是跑偏啦?我花大把时间在学习计算机编程上,是不是舍本逐末?

关于这一点大家大可不必担心。如今各行各业都需要数据分析能力,各行各业都需要Python,且Python的语法非常接近英语,对小白学习者非常友好,阅读Python代码就像在阅读文章。下面我们看一段使用Python制作词云图的代码,非常方便易懂:

from pyecharts import WordCloud
name = data_10['关键词'].tolist()
value = data_10['出现频率'].tolist()
wordcloud = WordCloud(width=1300, height=620)
wordcloud.add("", name, value, word_size_range=[20, 100])
wordcloud.render('./参考案例HTML/关键词统计词云图.html')
wordcloud

导入词云工具包——设置关键词和出现频率——设置好文字和图片的大小等参数,就能获得一张词云图:
有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python_第4张图片

你可能感兴趣的:(有Excel、Tableau、PowerBI都能做数据分析,为什么还要用Python)