Handler机制-源码解析

Handler经常被用来实现线程间通信,使用也很简单,今天得空学习了Handler相关的源码,在此记录加深印象,同时也希望帮助到其他的小伙伴们。

Handler的使用

Handler的使用很简单,最常见的是在UI线程创建Handler对象,在其他子线程中调用handler.sendMessage()相关方法,从而实现线程间通信的目的。如下:
 private Handler handler = new Handler() {
        @Override
        public void handleMessage(Message msg) {
            super.handleMessage(msg);
            switch (msg.what) {
                //处理子线程发过来的消息
                case 0:
                    break;
                //...
            }
        }
    };


    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        new Thread() {
            @Override
            public void run() {
                super.run();
                handler.sendEmptyMessage(0);
            }
        }.start();


    }

以上是在UI线程创建Handler对象,其实代码并不完整,因为在ActivityThread里面已经帮我们做了一些初始化操作,那么我们来看一下在子线程中创建Handler对象,该如何使用呢?,如下:

  private Handler handler;

    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_main);
        new Thread() {
            @Override
            public void run() {
                super.run();
                Looper.prepare();//增加了这行代码
                handler = new Handler() {
                    @Override
                    public void handleMessage(Message msg) {
                        super.handleMessage(msg);
                    }
                };
                Looper.loop();//增加了这行代码
            }
        }.start();
        
        handler.sendEmptyMessage(0);
可以看到在创建Handler对象前后分别添加了Looper.prepare()和Looper.loop()方法,为什么在UI线程创建Handler对象时不需要添加这两行代码呢,因为在App初始化的ActivityThread类中的Main方法帮我们做了:

public static void main(String[] args) {
        Trace.traceBegin(Trace.TRACE_TAG_ACTIVITY_MANAGER, "ActivityThreadMain");
        SamplingProfilerIntegration.start();


        // CloseGuard defaults to true and can be quite spammy.  We
        // disable it here, but selectively enable it later (via
        // StrictMode) on debug builds, but using DropBox, not logs.
        CloseGuard.setEnabled(false);


        Environment.initForCurrentUser();


        // Set the reporter for event logging in libcore
        EventLogger.setReporter(new EventLoggingReporter());


        // Make sure TrustedCertificateStore looks in the right place for CA certificates
        final File configDir = Environment.getUserConfigDirectory(UserHandle.myUserId());
        TrustedCertificateStore.setDefaultUserDirectory(configDir);


        Process.setArgV0("");


        Looper.prepareMainLooper();


        ActivityThread thread = new ActivityThread();
        thread.attach(false);


        if (sMainThreadHandler == null) {
            sMainThreadHandler = thread.getHandler();
        }


        if (false) {
            Looper.myLooper().setMessageLogging(new
                    LogPrinter(Log.DEBUG, "ActivityThread"));
        }


        // End of event ActivityThreadMain.
        Trace.traceEnd(Trace.TRACE_TAG_ACTIVITY_MANAGER);
        Looper.loop();


        throw new RuntimeException("Main thread loop unexpectedly exited");
    }

源码分析

我们按照子线程中创建Handler对象的完整代码来分析:依次来看Looper.prepare(),Handler的构造方法,Looper.loop()方法,
handler.sendMessage();
Handler机制-源码解析_第1张图片





Looper.prepare():
   public static void prepare() {
        prepare(true);
    }

    private static void prepare(boolean quitAllowed) {
        if (sThreadLocal.get() != null) {//由此可见,一个线程中只能有一个Looper对象
            throw new RuntimeException("Only one Looper may be created per thread");
        }
        sThreadLocal.set(new Looper(quitAllowed));
    }
调用了Looper的构造方法,看下源码:

 private Looper(boolean quitAllowed) {
        mQueue = new MessageQueue(quitAllowed);//一个Looper关联一个MessageQueue
        mThread = Thread.currentThread();
    }
继续跟踪,看MessageQueue的构造方法:
  MessageQueue(boolean quitAllowed) {
        mQuitAllowed = quitAllowed;
        mPtr = nativeInit();//此方法为JNI方法,水平有限,往下不再探究
    }
nativeInit()方法是JNI方法,水平有限,不再探究。
总结:Looper.prepare()方法,主要是在一个线程中初始化Looper并关联一个MessageQueue消息队列。一个线程中只能有一个Looper对象,只能关联一个MessageQueue对象,但是可以有多个Handler对象。
Handler()构造方法
  public Handler(Callback callback, boolean async) {
        if (FIND_POTENTIAL_LEAKS) {
            final Class klass = getClass();
            if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
                    (klass.getModifiers() & Modifier.STATIC) == 0) {//如果是匿名,内部类等
                Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
                    klass.getCanonicalName());//Handler应该被定义为Static内部类,否则可能会发生内存泄漏
            }
        }

        mLooper = Looper.myLooper();//持有Looper的引用
        if (mLooper == null) {
            throw new RuntimeException(
                "Can't create handler inside thread that has not called Looper.prepare()");
        }
        mQueue = mLooper.mQueue;//持有与Looper关联的MessageQueue的引用
        mCallback = callback;
        mAsynchronous = async;
    }


总结:Handler的构造方法主要是关联Looper和MessageQueue对象。
Loooper.loop()
 public static void loop() {
        final Looper me = myLooper();//获得当前线程Looper
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;//当前线程关联的MessageQueue对象

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();
        //无限循环
        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;

            final long traceTag = me.mTraceTag;
            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }
            final long start = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            final long end;
            try {
                msg.target.dispatchMessage(msg);
                end = (slowDispatchThresholdMs == 0) ? 0 : SystemClock.uptimeMillis();
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (slowDispatchThresholdMs > 0) {
                final long time = end - start;
                if (time > slowDispatchThresholdMs) {
                    Slog.w(TAG, "Dispatch took " + time + "ms on "
                            + Thread.currentThread().getName() + ", h=" +
                            msg.target + " cb=" + msg.callback + " msg=" + msg.what);
                }
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }
MessageQueue.next():
 Message next() {
        // Return here if the message loop has already quit and been disposed.
        // This can happen if the application tries to restart a looper after quit
        // which is not supported.
        final long ptr = mPtr;
        if (ptr == 0) {
            return null;
        }

        int pendingIdleHandlerCount = -1; // -1 only during first iteration
        int nextPollTimeoutMillis = 0;
        for (;;) {
            if (nextPollTimeoutMillis != 0) {
                Binder.flushPendingCommands();
            }

            nativePollOnce(ptr, nextPollTimeoutMillis);

            synchronized (this) {
                // Try to retrieve the next message.  Return if found.
                final long now = SystemClock.uptimeMillis();
                Message prevMsg = null;
                Message msg = mMessages;
                if (msg != null && msg.target == null) {//消息屏障
                    // Stalled by a barrier.  Find the next asynchronous message in the queue.
                    do {
                        prevMsg = msg;
                        msg = msg.next;
                    } while (msg != null && !msg.isAsynchronous());
                }
                if (msg != null) {
                    if (now < msg.when) {
                        // Next message is not ready.  Set a timeout to wake up when it is ready.
                        nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
                    } else {
                        // Got a message.
                        mBlocked = false;
                        if (prevMsg != null) {
                            prevMsg.next = msg.next;
                        } else {
                            mMessages = msg.next;
                        }
                        msg.next = null;
                        if (DEBUG) Log.v(TAG, "Returning message: " + msg);
                        msg.markInUse();
                        return msg;
                    }
                } else {
                    // No more messages.
                    nextPollTimeoutMillis = -1;
                }

                // Process the quit message now that all pending messages have been handled.
                if (mQuitting) {
                    dispose();
                    return null;
                }

                // If first time idle, then get the number of idlers to run.
                // Idle handles only run if the queue is empty or if the first message
                // in the queue (possibly a barrier) is due to be handled in the future.
                if (pendingIdleHandlerCount < 0
                        && (mMessages == null || now < mMessages.when)) {
                    pendingIdleHandlerCount = mIdleHandlers.size();
                }
                if (pendingIdleHandlerCount <= 0) {
                    // No idle handlers to run.  Loop and wait some more.
                    mBlocked = true;
                    continue;
                }

                if (mPendingIdleHandlers == null) {
                    mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
                }
                mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
            }

            // Run the idle handlers.
            // We only ever reach this code block during the first iteration.
            for (int i = 0; i < pendingIdleHandlerCount; i++) {
                final IdleHandler idler = mPendingIdleHandlers[i];
                mPendingIdleHandlers[i] = null; // release the reference to the handler

                boolean keep = false;
                try {
                    keep = idler.queueIdle();
                } catch (Throwable t) {
                    Log.wtf(TAG, "IdleHandler threw exception", t);
                }

                if (!keep) {
                    synchronized (this) {
                        mIdleHandlers.remove(idler);
                    }
                }
            }

            // Reset the idle handler count to 0 so we do not run them again.
            pendingIdleHandlerCount = 0;

            // While calling an idle handler, a new message could have been delivered
            // so go back and look again for a pending message without waiting.
            nextPollTimeoutMillis = 0;
        }
    }
总结:如果遇到消息屏障的话,会循环找出第一个异步消息,我们平常发的都是同步消息;继续往下,如果有消息需要处理,先判断时间有没有到,如果没到的话设置一下阻塞时间nextPollTimeoutMillis,进入下次循环的时候会调用,否则把消息返回给调用者。这个方法涉及道路一些JNI方法,所以理解的还不是很透彻。
dispatchMessage():
/**
     * Handle system messages here.
     */
    public void dispatchMessage(Message msg) {
        if (msg.callback != null) {
            handleCallback(msg);
        } else {
            if (mCallback != null) {
                if (mCallback.handleMessage(msg)) {
                    return;
                }
            }
            handleMessage(msg);//一般会调用这个方法,具体实现就是我们自己代码实现的
        }
    }
Handler.sendMessage()
跟踪代码,最终会调用MessageQueue的enquequeMessage方法
 boolean enqueueMessage(Message msg, long when) {
        if (msg.target == null) {
            throw new IllegalArgumentException("Message must have a target.");
        }
        if (msg.isInUse()) {
            throw new IllegalStateException(msg + " This message is already in use.");
        }

        synchronized (this) {
            if (mQuitting) {
                IllegalStateException e = new IllegalStateException(
                        msg.target + " sending message to a Handler on a dead thread");
                Log.w(TAG, e.getMessage(), e);
                msg.recycle();
                return false;
            }

            msg.markInUse();
            msg.when = when;
            Message p = mMessages;
            boolean needWake;
            if (p == null || when == 0 || when < p.when) {//如果链表为空,或者执行时间为0,或者比当前第一个Message的执行时间还早,则直接放到第一个的位置
                // New head, wake up the event queue if blocked.
                msg.next = p;
                mMessages = msg;
                needWake = mBlocked;
            } else {
                // Inserted within the middle of the queue.  Usually we don't have to wake
                // up the event queue unless there is a barrier at the head of the queue
                // and the message is the earliest asynchronous message in the queue.
                needWake = mBlocked && p.target == null && msg.isAsynchronous();
                Message prev;
                for (;;) {//循环找到第一个执行时间在新的Message的执行时间之间的连个元素,用next字段关联前后
                    prev = p;
                    p = p.next;
                    if (p == null || when < p.when) {
                        break;
                    }
                    if (needWake && p.isAsynchronous()) {
                        needWake = false;
                    }
                }
                msg.next = p; // invariant: p == prev.next
                prev.next = msg;
            }

            // We can assume mPtr != 0 because mQuitting is false.
            if (needWake) {
                nativeWake(mPtr);
            }
        }
        return true;
    }
MessageQueue的数据结构是单向链表结构,Message的next字段代表链表的下一个数据,mMessages代表queue中的第一个元素。以上就是按照Message的执行时间,将Message插入到queue的对应位置。

最后简单总结一下:

Handler机制-源码解析_第2张图片










参考博客: 深入理解MessageQueue

你可能感兴趣的:(Android)