第二次作业:卷积神经网络 part 1

 二、代码练习

 1、MNIST 数据集分类

卷积神经网络(CNN)

深度卷积神经网络中,有如下特性

  • 很多层: compositionality
  • 卷积: locality + stationarity of images
  • 池化: Invariance of object class to translations
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 09 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)
plt.figure(figsize=(8, 5))
for i in range(20):
    plt.subplot(4, 5, i + 1)
    image, _ = train_loader.dataset.__getitem__(i)
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x
# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)
Number of parameters: 6442
Train: [0/60000 (0%)]    Loss: 2.308119
Train: [6400/60000 (11%)]    Loss: 2.115720
Train: [12800/60000 (21%)]    Loss: 1.511818
Train: [19200/60000 (32%)]    Loss: 1.052802
Train: [25600/60000 (43%)]    Loss: 0.680601
Train: [32000/60000 (53%)]    Loss: 0.566419
Train: [38400/60000 (64%)]    Loss: 0.586511
Train: [44800/60000 (75%)]    Loss: 0.734423
Train: [51200/60000 (85%)]    Loss: 0.479510
Train: [57600/60000 (96%)]    Loss: 0.458314

Test set: Average loss: 0.4351, Accuracy: 8728/10000 (87%)
# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)
Number of parameters: 6422
Train: [0/60000 (0%)]    Loss: 2.325431
Train: [6400/60000 (11%)]    Loss: 1.310180
Train: [12800/60000 (21%)]    Loss: 0.506817
Train: [19200/60000 (32%)]    Loss: 0.230804
Train: [25600/60000 (43%)]    Loss: 0.379921
Train: [32000/60000 (53%)]    Loss: 0.382310
Train: [38400/60000 (64%)]    Loss: 0.135436
Train: [44800/60000 (75%)]    Loss: 0.189540
Train: [51200/60000 (85%)]    Loss: 0.342205
Train: [57600/60000 (96%)]    Loss: 0.140112

Test set: Average loss: 0.1509, Accuracy: 9520/10000 (95%)

 

 通过上面的测试结果,可以发现,含有相同参数的 CNN 效果要明显优于简单的全连接网络,因为 CNN 能够通过池化和卷积两个手段更好的挖掘图像中的信息

# 这里解释一下 torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))
perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

 

Number of parameters: 6442
Train: [0/60000 (0%)]    Loss: 2.362631
Train: [6400/60000 (11%)]    Loss: 1.658451
Train: [12800/60000 (21%)]    Loss: 1.070850
Train: [19200/60000 (32%)]    Loss: 0.682461
Train: [25600/60000 (43%)]    Loss: 0.689669
Train: [32000/60000 (53%)]    Loss: 0.415411
Train: [38400/60000 (64%)]    Loss: 0.407892
Train: [44800/60000 (75%)]    Loss: 0.484313
Train: [51200/60000 (85%)]    Loss: 0.644840
Train: [57600/60000 (96%)]    Loss: 0.287991

Test set: Average loss: 0.4224, Accuracy: 8747/10000 (87%)

 

perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)
Number of parameters: 6422
Train: [0/60000 (0%)]    Loss: 2.283589
Train: [6400/60000 (11%)]    Loss: 2.285283
Train: [12800/60000 (21%)]    Loss: 2.248403
Train: [19200/60000 (32%)]    Loss: 2.188043
Train: [25600/60000 (43%)]    Loss: 1.723595
Train: [32000/60000 (53%)]    Loss: 1.390413
Train: [38400/60000 (64%)]    Loss: 1.112955
Train: [44800/60000 (75%)]    Loss: 0.665074
Train: [51200/60000 (85%)]    Loss: 0.838769
Train: [57600/60000 (96%)]    Loss: 0.488362

Test set: Average loss: 0.5761, Accuracy: 8222/10000 (82%)

 

从打乱像素顺序的实验结果来看,全连接网络的性能基本上没有发生变化,但是卷积神经网络的性能明显下降。

这是因为对于卷积神经网络,会利用像素的局部关系,但是打乱顺序以后,这些像素间的关系将无法得到利用。

 

2、CIFAR10 数据集分类

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试是没有必要
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def imshow(img):
    plt.figure(figsize=(8,8))
    img = img / 2 + 0.5     # 转换到 [0,1] 之间
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# 得到一组图像
images, labels = iter(trainloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示第一行图像的标签
for j in range(8):
    print(classes[labels[j]])
deer
deer
dog
plane
bird
car
ship
car
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)
for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')
Epoch: 1 Minibatch:     1 loss: 2.303
Epoch: 1 Minibatch:   101 loss: 1.854
Epoch: 1 Minibatch:   201 loss: 1.556
Epoch: 1 Minibatch:   301 loss: 1.739
Epoch: 1 Minibatch:   401 loss: 1.784
Epoch: 1 Minibatch:   501 loss: 1.547
Epoch: 1 Minibatch:   601 loss: 1.393
Epoch: 1 Minibatch:   701 loss: 1.243
Epoch: 2 Minibatch:     1 loss: 1.416
Epoch: 2 Minibatch:   101 loss: 1.495
Epoch: 2 Minibatch:   201 loss: 1.343
Epoch: 2 Minibatch:   301 loss: 1.239
Epoch: 2 Minibatch:   401 loss: 1.617
Epoch: 2 Minibatch:   501 loss: 1.585
Epoch: 2 Minibatch:   601 loss: 1.246
Epoch: 2 Minibatch:   701 loss: 1.386
Epoch: 3 Minibatch:     1 loss: 1.226
Epoch: 3 Minibatch:   101 loss: 1.344
Epoch: 3 Minibatch:   201 loss: 1.185
Epoch: 3 Minibatch:   301 loss: 1.202
Epoch: 3 Minibatch:   401 loss: 1.366
Epoch: 3 Minibatch:   501 loss: 0.906
Epoch: 3 Minibatch:   601 loss: 1.216
Epoch: 3 Minibatch:   701 loss: 1.109
Epoch: 4 Minibatch:     1 loss: 1.239
Epoch: 4 Minibatch:   101 loss: 0.933
Epoch: 4 Minibatch:   201 loss: 1.104
Epoch: 4 Minibatch:   301 loss: 1.413
Epoch: 4 Minibatch:   401 loss: 1.167
Epoch: 4 Minibatch:   501 loss: 1.168
Epoch: 4 Minibatch:   601 loss: 0.793
Epoch: 4 Minibatch:   701 loss: 1.108
Epoch: 5 Minibatch:     1 loss: 1.095
Epoch: 5 Minibatch:   101 loss: 0.798
Epoch: 5 Minibatch:   201 loss: 1.008
Epoch: 5 Minibatch:   301 loss: 1.249
Epoch: 5 Minibatch:   401 loss: 1.130
Epoch: 5 Minibatch:   501 loss: 0.940
Epoch: 5 Minibatch:   601 loss: 1.000
Epoch: 5 Minibatch:   701 loss: 1.000
Epoch: 6 Minibatch:     1 loss: 0.966
Epoch: 6 Minibatch:   101 loss: 0.947
Epoch: 6 Minibatch:   201 loss: 1.062
Epoch: 6 Minibatch:   301 loss: 0.916
Epoch: 6 Minibatch:   401 loss: 1.116
Epoch: 6 Minibatch:   501 loss: 0.833
Epoch: 6 Minibatch:   601 loss: 0.988
Epoch: 6 Minibatch:   701 loss: 0.907
Epoch: 7 Minibatch:     1 loss: 1.055
Epoch: 7 Minibatch:   101 loss: 1.058
Epoch: 7 Minibatch:   201 loss: 0.970
Epoch: 7 Minibatch:   301 loss: 0.926
Epoch: 7 Minibatch:   401 loss: 1.035
Epoch: 7 Minibatch:   501 loss: 0.899
Epoch: 7 Minibatch:   601 loss: 0.920
Epoch: 7 Minibatch:   701 loss: 0.703
Epoch: 8 Minibatch:     1 loss: 0.743
Epoch: 8 Minibatch:   101 loss: 0.969
Epoch: 8 Minibatch:   201 loss: 0.872
Epoch: 8 Minibatch:   301 loss: 0.977
Epoch: 8 Minibatch:   401 loss: 1.136
Epoch: 8 Minibatch:   501 loss: 1.096
Epoch: 8 Minibatch:   601 loss: 0.975
Epoch: 8 Minibatch:   701 loss: 0.685
Epoch: 9 Minibatch:     1 loss: 0.803
Epoch: 9 Minibatch:   101 loss: 0.950
Epoch: 9 Minibatch:   201 loss: 0.985
Epoch: 9 Minibatch:   301 loss: 0.946
Epoch: 9 Minibatch:   401 loss: 1.151
Epoch: 9 Minibatch:   501 loss: 0.928
Epoch: 9 Minibatch:   601 loss: 1.087
Epoch: 9 Minibatch:   701 loss: 0.828
Epoch: 10 Minibatch:     1 loss: 0.717
Epoch: 10 Minibatch:   101 loss: 0.678
Epoch: 10 Minibatch:   201 loss: 0.748
Epoch: 10 Minibatch:   301 loss: 0.878
Epoch: 10 Minibatch:   401 loss: 0.987
Epoch: 10 Minibatch:   501 loss: 0.864
Epoch: 10 Minibatch:   601 loss: 0.915
Epoch: 10 Minibatch:   701 loss: 0.752
Finished Training
# 得到一组图像
images, labels = iter(testloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

 

cat
ship
ship
plane
frog
frog
car
frog
outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

 cat

ship

ship

plane

deer

frog

car

frog

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))
Accuracy of the network on the 10000 test images: 64 %

 

3、使用 VGG16 对 CIFAR10 分类

定义 dataloader

 

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

 

VGG 网络定义

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(cfg)
        self.classifier = nn.Linear(2048, 10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)
        
# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

网络训练

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))
Accuracy of the network on the 10000 test images: 84.92 %

4、使用VGG模型迁移学习进行猫狗大战

 

数据处理

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes
loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)


'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)

创建 VGG Model

model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

修改最后一层,冻结前面层的参数

 

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

 

训练并测试全连接层

第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
      epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)
def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])

Loss: 0.0487 Acc: 0.9450

sledge hammer 是在 ImageNet 上预训练好的 VGG 模型,在这个数据集中,有大量猫和狗的图片

我们学习了冻结前面层,只训练最后的一个 linear layer 中的 8194 个参数 (bias )。

总结

通过这一周的课我大体了解了如何在工程问题中使用深度学习:首先准备待解决问题的数据,

然后下载预训练好的网络,接着用准备好的数据来 fine-tune 预训练好的网络。这些步骤在任何深度学习工程项目中都是如此。

另外,我发现自己如果只跟随老师布置的任务的话其实是跟不上的,感觉有太多基础知识自己没有掌握,所以我自己同时在学别的网课,

我会尽力赶上进度的,热爱学习,拒绝划水。

你可能感兴趣的:(第二次作业:卷积神经网络 part 1)