第二次作业:卷积神经网络_part_1

【第一部分】视频学习

一、深度学习的数学基础

·概率是基础
·支持向量机涉及很多数学基础
·梯度下降是神经网络共同的基础

策略设计

·训练误差泛化误差

第二次作业:卷积神经网络_part_1_第1张图片

·无免费午餐定理
  当考虑在所有问题上的平均性能时,任意两个模型都是相同的
  没有任何一个模型可以在所有的学习任务里表现最好

note:脱离具体问题,谈“什么学习算法更好”毫无意义。没有任何一个模型可以在所有的学习任务里表现最好,比如深度学习算法性好或者说准确性高,但是在解决一个解释性任务时就不好。

·奥卡姆剃刀原理
  Occam's Razor:14世纪逻辑学家、圣方济各会修士奥卡姆的威廉提出
  “如无必要,勿增实体” 即 “简单有效原理”

第二次作业:卷积神经网络_part_1_第2张图片

第二次作业:卷积神经网络_part_1_第3张图片

频率学派VS贝叶斯学派

第二次作业:卷积神经网络_part_1_第4张图片

第二次作业:卷积神经网络_part_1_第5张图片

概率学派VS机器学习方法

第二次作业:卷积神经网络_part_1_第6张图片

相关性VS因果性

第二次作业:卷积神经网络_part_1_第7张图片

二、卷积神经网络

卷积神经网络结构图

第二次作业:卷积神经网络_part_1_第8张图片

卷积神经网络基本应用

·分类
·检索
·检测
·分割
·人脸识别
·人脸表情识别
·图像生成
·图像风格转化
·自动驾驶

传统神经网络VS卷积神经网络

第二次作业:卷积神经网络_part_1_第9张图片

损失函数

  损失函数用来衡量吻合度,就是来衡量输出标签与真实标签的差异是多少

第二次作业:卷积神经网络_part_1_第10张图片

卷积——Convolutional Layer

卷积操作示意图

第二次作业:卷积神经网络_part_1_第11张图片

第二次作业:卷积神经网络_part_1_第12张图片

输出特征图大小:

  (N-F)/stride+1 (未加padding)
  (N+padding*2-F)/stride+1 (有padding)

池化——Pooling Layer

Pooling
  ·保留了主要特征的同时减少参数和计算量,防止过拟合,提高模型泛化能力
  ·它一般处于卷积层和卷积层之间,全连接层和全连接层之间

pooling的类型

第二次作业:卷积神经网络_part_1_第13张图片

全连接——Fully Connected Layer

  经过若干次的卷积和池化,完成了图像数据抽象特征的提取,在网络的尾部需要加上几个全连接层来提升卷积神经网络的分类性能,完成分类的任务。

第二次作业:卷积神经网络_part_1_第14张图片

卷积神经网络小结

第二次作业:卷积神经网络_part_1_第15张图片

卷积神经网络典型结构——AlexNet

AlexNet成功的原因:
  ·大数据训练:百万级ImageNet
  ·非线性激活函数:ReLU
  ·防止过拟合:Dropout,Data augmentation
  ·其他:双GPU实现
ReLU函数的优点
  ·解决了梯度消失的问题(在正区间)
  ·计算速度特别快,只需要判断输入是否大于0
  ·收敛速度远快于sigmoid
DropOut(随机失活)
  防止过拟合。训练时随即关闭部分神经元,测试时整合所有神经元。

第二次作业:卷积神经网络_part_1_第16张图片

数据增强(data augmentation)
  ·平移、翻转、对称
    随机crop。训练时,对256256的图片进行随机crop到224224
    水平翻转,相当于将样本倍增
  ·改变RGB通道强度
    对RGB空间做一个高斯扰动

AlexNet分层解析

  • 第一次卷积:卷积—ReLU—池化
  • 第二次卷积:卷积—ReLU—池化
  • 第三次卷积:卷积-ReLU
  • 第四次卷积:卷积-ReLU
  • 第五次卷积:卷积—ReLU—池化
  • 第六层:全连接-ReLU-DropOut
  • 第七层:全连接-ReLU-DropOut
  • 第八层:全连接-SoftMax

ResNet(残差学习网络)

第二次作业:卷积神经网络_part_1_第17张图片

第二次作业:卷积神经网络_part_1_第18张图片

Note:

  • 传统神经网络—全连接
    卷积神经网络-局部关联、参数共享
  • 过拟合:训练集上准确率高,测试集上准确率低。
    网络过度的拟合了训练集上训练数据的特征,所以泛化性能差
  • 参数共享:在卷积核滑动提取特征的过程中卷积核中的参数是不改变的,这个参数是共享的
  • 感受野:卷积核在卷积的时候,对应的那个区域
  • 1*1的卷积一般只起到对feature map起降维的作用
  • 特征分组可以显著提高准确率
  • 三维卷积可以无视图像的通道数
  • 彩色图像有RGB三个色值通道,分别表示红、绿、蓝
    每个通道内的像素可以用一个二维数组表示,数值代表0-255之间的像素值
    假设一张900600的彩色的图片,计算机里面可以用(900600*3)的数组表示
  • 卷积操作相当于特征提取,卷积核相当于一个过滤器,提取我们需要的特征

【第二部分】 代码练习

MNIST数据集分类

1.加载数据

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
import numpy

# 一个函数,用来计算模型中有多少参数
def get_n_params(model):
    np=0
    for p in list(model.parameters()):
        np += p.nelement()
    return np

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

加载数据(MNIST)

input_size  = 28*28   # MNIST上的图像尺寸是 28x28
output_size = 10      # 类别为 0 到 9 的数字,因此为十类

train_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=64, shuffle=True)

test_loader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=False, transform=transforms.Compose([
             transforms.ToTensor(),
             transforms.Normalize((0.1307,), (0.3081,))])),
    batch_size=1000, shuffle=True)
#显示数据集中的部分影像
plt.figure(figsize=(8, 5))
for i in range(20):
    plt.subplot(4, 5, i + 1)
    image, _ = train_loader.dataset.__getitem__(i)
    plt.imshow(image.squeeze().numpy(),'gray')
    plt.axis('off');

第二次作业:卷积神经网络_part_1_第19张图片

2.创建网络

class FC2Layer(nn.Module):
    def __init__(self, input_size, n_hidden, output_size):
        # nn.Module子类的函数必须在构造函数中执行父类的构造函数
        # 下式等价于nn.Module.__init__(self)        
        super(FC2Layer, self).__init__()
        self.input_size = input_size
        # 这里直接用 Sequential 就定义了网络,注意要和下面 CNN 的代码区分开
        self.network = nn.Sequential(
            nn.Linear(input_size, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, n_hidden), 
            nn.ReLU(), 
            nn.Linear(n_hidden, output_size), 
            nn.LogSoftmax(dim=1)
        )
    def forward(self, x):
        # view一般出现在model类的forward函数中,用于改变输入或输出的形状
        # x.view(-1, self.input_size) 的意思是多维的数据展成二维
        # 代码指定二维数据的列数为 input_size=784,行数 -1 表示我们不想算,电脑会自己计算对应的数字
        # 在 DataLoader 部分,我们可以看到 batch_size 是64,所以得到 x 的行数是64
        # 大家可以加一行代码:print(x.cpu().numpy().shape)
        # 训练过程中,就会看到 (64, 784) 的输出,和我们的预期是一致的

        # forward 函数的作用是,指定网络的运行过程,这个全连接网络可能看不啥意义,
        # 下面的CNN网络可以看出 forward 的作用。
        x = x.view(-1, self.input_size)
        return self.network(x)
    


class CNN(nn.Module):
    def __init__(self, input_size, n_feature, output_size):
        # 执行父类的构造函数,所有的网络都要这么写
        super(CNN, self).__init__()
        # 下面是网络里典型结构的一些定义,一般就是卷积和全连接
        # 池化、ReLU一类的不用在这里定义
        self.n_feature = n_feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n_feature, kernel_size=5)
        self.fc1 = nn.Linear(n_feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)    
    
    # 下面的 forward 函数,定义了网络的结构,按照一定顺序,把上面构建的一些结构组织起来
    # 意思就是,conv1, conv2 等等的,可以多次重用
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max_pool2d(x, kernel_size=2)
        x = x.view(-1, self.n_feature*4*4)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.log_softmax(x, dim=1)
        return x
###定义训练和测试函数
# 训练函数
def train(model):
    model.train()
    # 主里从train_loader里,64个样本一个batch为单位提取样本进行训练
    for batch_idx, (data, target) in enumerate(train_loader):
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))


def test(model):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        # 把数据送到GPU中
        data, target = data.to(device), target.to(device)
        # 把数据送入模型,得到预测结果
        output = model(data)
        # 计算本次batch的损失,并加到 test_loss 中
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        # get the index of the max log-probability,最后一层输出10个数,
        # 值最大的那个即对应着分类结果,然后把分类结果保存在 pred 里
        pred = output.data.max(1, keepdim=True)[1]
        # 将 pred 与 target 相比,得到正确预测结果的数量,并加到 correct 中
        # 这里需要注意一下 view_as ,意思是把 target 变成维度和 pred 一样的意思                                                
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

3.在小型全连接网络上训练(Fully-connected network)

n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train(model_fnn)
test(model_fnn)

第二次作业:卷积神经网络_part_1_第20张图片

4.在卷积神经网络上训练

# Training settings 
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train(model_cnn)
test(model_cnn)

第二次作业:卷积神经网络_part_1_第21张图片

CNN通过卷积和池化能够更好的提取图像中的信息,含义相同参数的CNN的效果要明显优于简单的全连接网络

5.打乱像素顺序再在两个网络上训练与测试

# torch.randperm 函数,给定参数n,返回一个从0到n-1的随机整数排列
perm = torch.randperm(784)
plt.figure(figsize=(8, 4))
for i in range(10):
    image, _ = train_loader.dataset.__getitem__(i)
    # permute pixels
    image_perm = image.view(-1, 28*28).clone()
    image_perm = image_perm[:, perm]
    image_perm = image_perm.view(-1, 1, 28, 28)
    plt.subplot(4, 5, i + 1)
    plt.imshow(image.squeeze().numpy(), 'gray')
    plt.axis('off')
    plt.subplot(4, 5, i + 11)
    plt.imshow(image_perm.squeeze().numpy(), 'gray')
    plt.axis('off')

第二次作业:卷积神经网络_part_1_第22张图片

# 对每个 batch 里的数据,打乱像素顺序的函数
def perm_pixel(data, perm):
    # 转化为二维矩阵
    data_new = data.view(-1, 28*28)
    # 打乱像素顺序
    data_new = data_new[:, perm]
    # 恢复为原来4维的 tensor
    data_new = data_new.view(-1, 1, 28, 28)
    return data_new

# 训练函数
def train_perm(model, perm):
    model.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        # 像素打乱顺序
        data = perm_pixel(data, perm)

        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train: [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

# 测试函数
def test_perm(model, perm):
    model.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        data, target = data.to(device), target.to(device)

        # 像素打乱顺序
        data = perm_pixel(data, perm)

        output = model(data)
        test_loss += F.nll_loss(output, target, reduction='sum').item()
        pred = output.data.max(1, keepdim=True)[1]                                            
        correct += pred.eq(target.data.view_as(pred)).cpu().sum().item()

    test_loss /= len(test_loader.dataset)
    accuracy = 100. * correct / len(test_loader.dataset)
    print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
        test_loss, correct, len(test_loader.dataset),
        accuracy))

#######在全连接网络上训练与测试:

perm = torch.randperm(784)
n_hidden = 8 # number of hidden units

model_fnn = FC2Layer(input_size, n_hidden, output_size)
model_fnn.to(device)
optimizer = optim.SGD(model_fnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_fnn)))

train_perm(model_fnn, perm)
test_perm(model_fnn, perm)

第二次作业:卷积神经网络_part_1_第23张图片

#在卷积神经网络上训练与测试:
perm = torch.randperm(784)
n_features = 6 # number of feature maps

model_cnn = CNN(input_size, n_features, output_size)
model_cnn.to(device)
optimizer = optim.SGD(model_cnn.parameters(), lr=0.01, momentum=0.5)
print('Number of parameters: {}'.format(get_n_params(model_cnn)))

train_perm(model_cnn, perm)
test_perm(model_cnn, perm)

第二次作业:卷积神经网络_part_1_第24张图片

像素被打乱之后卷积神经网络的性能下降了11个百分点,而全连接网络的性能基本上没有变化。
这是因为卷积神经网络会利用像素的局部关系,所以当像素被打乱之后,像素之间的关系就不能被卷积神经网络利用,从而导致性能明显下降。

CIFAR10数据及分析

  CIFAR10数据集,它包含十个类别:‘airplane’, ‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’, ‘truck’。CIFAR-10 中的图像尺寸为3x32x32,也就是RGB的3层颜色通道,每层通道内的尺寸为32*32。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

# 注意下面代码中:训练的 shuffle 是 True,测试的 shuffle 是 false
# 训练时可以打乱顺序增加多样性,测试时没有必要
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=8,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
def imshow(img):
    plt.figure(figsize=(8,8))
    img = img / 2 + 0.5     # 转换到 [0,1] 之间
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()

# 得到一组图像
images, labels = iter(trainloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示第一行图像的标签
for j in range(8):
    print(classes[labels[j]])

第二次作业:卷积神经网络_part_1_第25张图片

#定义网络、损失函数和优化器
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

# 网络放到GPU上
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

#######训练网络
for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

第二次作业:卷积神经网络_part_1_第26张图片

# 得到一组图像
images, labels = iter(testloader).next()
# 展示图像
imshow(torchvision.utils.make_grid(images))
# 展示图像的标签
for j in range(8):
    print(classes[labels[j]])

outputs = net(images.to(device))
_, predicted = torch.max(outputs, 1)

# 展示预测的结果
for j in range(8):
    print(classes[predicted[j]])

第二次作业:卷积神经网络_part_1_第27张图片
对比真实标签和识别结果发现,有识别错误的情况,说明准确率还有待提升

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

使用 VGG16 对 CIFAR10 分类

VGG16的网络结构图

第二次作业:卷积神经网络_part_1_第28张图片

  从左至右,一张彩色图片输入到网络,白色框是卷积层,红色是池化,蓝色是全连接层,棕色框是预测层。预测层的作用是将全连接层输出的信息转化为相应的类别概率,而起到分类作用。
  可以看到 VGG16 是13个卷积层+3个全连接层叠加而成。

1.定义dataloader

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import numpy as np
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

transform_train = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

transform_test = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,  download=True, transform=transform_train)
testset  = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)

trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

2.VGG 网络定义

class VGG(nn.Module):
    def __init__(self):
        super(VGG, self).__init__()
        self.cfg = [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512, 'M']
        self.features = self._make_layers(self.cfg)
        self.classifier = nn.Linear(512,10)

    def forward(self, x):
        out = self.features(x)
        out = out.view(out.size(0), -1)
        out = self.classifier(out)
        return out

    def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# 网络放到GPU上
net = VGG().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=0.001)

3.网络训练

for epoch in range(10):  # 重复多轮训练
    for i, (inputs, labels) in enumerate(trainloader):
        inputs = inputs.to(device)
        labels = labels.to(device)
        # 优化器梯度归零
        optimizer.zero_grad()
        # 正向传播 + 反向传播 + 优化 
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        # 输出统计信息
        if i % 100 == 0:   
            print('Epoch: %d Minibatch: %5d loss: %.3f' %(epoch + 1, i + 1, loss.item()))

print('Finished Training')

第二次作业:卷积神经网络_part_1_第29张图片

4.测试验证准确率

correct = 0
total = 0

for data in testloader:
    images, labels = data
    images, labels = images.to(device), labels.to(device)
    outputs = net(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %.2f %%' % (
    100 * correct / total))

使用VGG模型进行猫狗大战

import numpy as np
import matplotlib.pyplot as plt
import os
import torch
import torch.nn as nn
import torchvision
from torchvision import models,transforms,datasets
import time
import json


# 判断是否存在GPU设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print('Using gpu: %s ' % torch.cuda.is_available())

下载数据

! wget http://fenggao-image.stor.sinaapp.com/dogscats.zip
! unzip dogscats.zip

数据处理

normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

vgg_format = transforms.Compose([
                transforms.CenterCrop(224),
                transforms.ToTensor(),
                normalize,
            ])

data_dir = './dogscats'

dsets = {x: datasets.ImageFolder(os.path.join(data_dir, x), vgg_format)
         for x in ['train', 'valid']}

dset_sizes = {x: len(dsets[x]) for x in ['train', 'valid']}
dset_classes = dsets['train'].classes
# 通过下面代码可以查看 dsets 的一些属性

print(dsets['train'].classes)
print(dsets['train'].class_to_idx)
print(dsets['train'].imgs[:5])
print('dset_sizes: ', dset_sizes)

loader_train = torch.utils.data.DataLoader(dsets['train'], batch_size=64, shuffle=True, num_workers=6)
loader_valid = torch.utils.data.DataLoader(dsets['valid'], batch_size=5, shuffle=False, num_workers=6)


'''
valid 数据一共有2000张图,每个batch是5张,因此,下面进行遍历一共会输出到 400
同时,把第一个 batch 保存到 inputs_try, labels_try,分别查看
'''
count = 1
for data in loader_valid:
    print(count, end='\n')
    if count == 1:
        inputs_try,labels_try = data
    count +=1

print(labels_try)
print(inputs_try.shape)
# 显示图片的小程序

def imshow(inp, title=None):
#   Imshow for Tensor.
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.225])
    inp = np.clip(std * inp + mean, 0,1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated
# 显示 labels_try 的5张图片,即valid里第一个batch的5张图片
out = torchvision.utils.make_grid(inputs_try)
imshow(out, title=[dset_classes[x] for x in labels_try])

第二次作业:卷积神经网络_part_1_第30张图片

创建VGG Model

!wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json
model_vgg = models.vgg16(pretrained=True)

with open('./imagenet_class_index.json') as f:
    class_dict = json.load(f)
dic_imagenet = [class_dict[str(i)][1] for i in range(len(class_dict))]

inputs_try , labels_try = inputs_try.to(device), labels_try.to(device)
model_vgg = model_vgg.to(device)

outputs_try = model_vgg(inputs_try)

print(outputs_try)
print(outputs_try.shape)

'''
可以看到结果为5行,1000列的数据,每一列代表对每一种目标识别的结果。
但是我也可以观察到,结果非常奇葩,有负数,有正数,
为了将VGG网络输出的结果转化为对每一类的预测概率,我们把结果输入到 Softmax 函数
'''
m_softm = nn.Softmax(dim=1)
probs = m_softm(outputs_try)
vals_try,pred_try = torch.max(probs,dim=1)

print( 'prob sum: ', torch.sum(probs,1))
print( 'vals_try: ', vals_try)
print( 'pred_try: ', pred_try)

print([dic_imagenet[i] for i in pred_try.data])
imshow(torchvision.utils.make_grid(inputs_try.data.cpu()), 
       title=[dset_classes[x] for x in labels_try.data.cpu()])

第二次作业:卷积神经网络_part_1_第31张图片

修改最后一层,冻结前面层的参数

print(model_vgg)

model_vgg_new = model_vgg;

for param in model_vgg_new.parameters():
    param.requires_grad = False
model_vgg_new.classifier._modules['6'] = nn.Linear(4096, 2)
model_vgg_new.classifier._modules['7'] = torch.nn.LogSoftmax(dim = 1)

model_vgg_new = model_vgg_new.to(device)

print(model_vgg_new.classifier)

训练并测试全连接层

'''
第一步:创建损失函数和优化器

损失函数 NLLLoss() 的 输入 是一个对数概率向量和一个目标标签. 
它不会为我们计算对数概率,适合最后一层是log_softmax()的网络. 
'''
criterion = nn.NLLLoss()

# 学习率
lr = 0.001

# 随机梯度下降
optimizer_vgg = torch.optim.SGD(model_vgg_new.classifier[6].parameters(),lr = lr)

'''
第二步:训练模型
'''

def train_model(model,dataloader,size,epochs=1,optimizer=None):
    model.train()
    
    for epoch in range(epochs):
        running_loss = 0.0
        running_corrects = 0
        count = 0
        for inputs,classes in dataloader:
            inputs = inputs.to(device)
            classes = classes.to(device)
            outputs = model(inputs)
            loss = criterion(outputs,classes)           
            optimizer = optimizer
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            _,preds = torch.max(outputs.data,1)
            # statistics
            running_loss += loss.data.item()
            running_corrects += torch.sum(preds == classes.data)
            count += len(inputs)
            print('Training: No. ', count, ' process ... total: ', size)
        epoch_loss = running_loss / size
        epoch_acc = running_corrects.data.item() / size
        print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
        
        
# 模型训练
train_model(model_vgg_new,loader_train,size=dset_sizes['train'], epochs=1, 
            optimizer=optimizer_vgg)

第二次作业:卷积神经网络_part_1_第32张图片

def test_model(model,dataloader,size):
    model.eval()
    predictions = np.zeros(size)
    all_classes = np.zeros(size)
    all_proba = np.zeros((size,2))
    i = 0
    running_loss = 0.0
    running_corrects = 0
    for inputs,classes in dataloader:
        inputs = inputs.to(device)
        classes = classes.to(device)
        outputs = model(inputs)
        loss = criterion(outputs,classes)           
        _,preds = torch.max(outputs.data,1)
        # statistics
        running_loss += loss.data.item()
        running_corrects += torch.sum(preds == classes.data)
        predictions[i:i+len(classes)] = preds.to('cpu').numpy()
        all_classes[i:i+len(classes)] = classes.to('cpu').numpy()
        all_proba[i:i+len(classes),:] = outputs.data.to('cpu').numpy()
        i += len(classes)
        print('Testing: No. ', i, ' process ... total: ', size)        
    epoch_loss = running_loss / size
    epoch_acc = running_corrects.data.item() / size
    print('Loss: {:.4f} Acc: {:.4f}'.format(
                     epoch_loss, epoch_acc))
    return predictions, all_proba, all_classes
  
predictions, all_proba, all_classes = test_model(model_vgg_new,loader_valid,size=dset_sizes['valid'])

第二次作业:卷积神经网络_part_1_第33张图片

可视化模型预测结果(主观分析)

# 单次可视化显示的图片个数
n_view = 8
correct = np.where(predictions==all_classes)[0]
from numpy.random import random, permutation
idx = permutation(correct)[:n_view]
print('random correct idx: ', idx)
loader_correct = torch.utils.data.DataLoader([dsets['valid'][x] for x in idx],
                  batch_size = n_view,shuffle=True)
for data in loader_correct:
    inputs_cor,labels_cor = data
# Make a grid from batch
out = torchvision.utils.make_grid(inputs_cor)
imshow(out, title=[l.item() for l in labels_cor])

第二次作业:卷积神经网络_part_1_第34张图片

Inception V1-V4

GoogleNet和VGG是ImageNet挑战赛中的第一名和第二名,二者的网络都更深了,但是:

  • VGG继承了LeNet和AlexNet的一些框架结构
  • GoogleNet虽然深度有22层,但是参数却是AlexNet的1/12.而VGG是AlexNet的三倍,所以,在内存和计算资源有限的时候,GoogleNet是比较好的选择

Inception V1

Inception是GoogleNet的核心

第二次作业:卷积神经网络_part_1_第35张图片

利用CNN中常见的三种卷积核,和池化操作堆叠在一起,增加了网络的宽度,也加强了网络对尺度的影响。但是计算量比较大,改进之后是这样:

第二次作业:卷积神经网络_part_1_第36张图片

加入1X1的卷积的作用:可以降低纬度,减少计算量;增加网络层数,提高精度。

Inception V2

  • 如果只是单纯的堆叠网络,虽然可以提高准确率,但是会带来更大的计算量降低计算效率
  • 大尺寸的卷积核虽然有更大的感受野,但是也有更多的参数
  • 后来GoogleNet团队提出了用两个3X3的卷积核代替单个5X5大小的卷积核
    并且这种方式不会导致表达的缺失
  • 更进一步,又提出了nX1的卷积核,任意的nxn的卷积都可以通过nx1后接上1xn来代替。
    不过这种分解在网络的中部使用效果才会更好
    第二次作业:卷积神经网络_part_1_第37张图片

Inception V3

  • Inception V3最重要的改进就是分解Factorization,例如把7x7分解成两个一维的卷积(1x7和7x1)
  • 既可以加速运算,又可以将一个卷积拆成两个卷积,这样使得网络的深度进一步加深,并且增加了网络的非线性。(每增加一层都要用ReLU),此时网络的输入也从224x224变成299x299。

第二次作业:卷积神经网络_part_1_第38张图片

Inception V4

  • ResNet结构大大加深了网络的深度,而且极大的提高了训练速度。
  • Inception v4就是利用残差连接(Residual Connection)来改进v3

残差结构:

第二次作业:卷积神经网络_part_1_第39张图片

将该结构与Inception相结合:

第二次作业:卷积神经网络_part_1_第40张图片

通过20个类似的模块组合可得到:

第二次作业:卷积神经网络_part_1_第41张图片

你可能感兴趣的:(第二次作业:卷积神经网络_part_1)