- Windows系统下的Spark环境配置
eeee~~
3:大数据技术实用教程spark大数据分布式
一:Spark的介绍ApacheSpark是一个开源的分布式大数据处理引擎,它提供了一整套开发API,包括流计算和机器学习。Spark支持批处理和流处理,其显著特点是能够在内存中进行迭代计算,从而加快数据处理速度。尽管Spark是用Scala开发的,但它也为Java、Scala、Python和R等高级编程语言提供了开发接口。Spark提供了多个核心组件,包括:SparkCore:提供内存计算的能力
- 入门篇 - Spark简介
君子何为
Spark核心模块image.pngSparkCore:提供了Spark最基础与最核心的功能,Spark其他的功能如:SparkSQL,SparkStreaming,GraphX,MLlib都是在SparkCore的基础上进行扩展的SparkSQL:Spark用来操作结构化数据的组件。通过SparkSQL,用户可以使用SQL或者ApacheHive版本的SQL来查询数据。SparkStreamin
- 深入理解Spark的前世今生
闲云野鹤~~~
Spark
文章来源:https://blog.csdn.net/qq_42107047/article/details/80239094感谢大神分享~~~~~一:大数据的概述1.1Spark是什么? Spark,是一种通用的大数据计算框架,正如传统大数据技术Hadoop的MapReduce、Hive引擎,以及Storm流式实时计算引擎等。Spark包含了大数据领域常见的各种计算框架:比如SparkCore用
- Spark Chapter 8 Spark SQL
深海suke
【参考以慕课网日志分析为例进入大数据Sparksql】0导读SQL:MySQL,Oracle,DB2,SQLServer在大数据平台上实现大数据计算:Hive/SparkSQL/SparkCore直接使用SQL语句进行大数据分析hive的问题:底层MR,2.x之后可以用spark应用场景SQLonHadoop:Hive,Shark(不维护了),Impala(Cloudera,内存使用较多),Pre
- Spark简介
麦克阿瑟99
Spark作为第二代大数据处理工具,跟hadoop对比,它是基于内存的,所以在迭代计算方便速度有了很大提升。我用到的主要是SparkCore,SparkSQL,SparkStreaming。Spark以Rdd作为基础,Rdd是一个分布式的容器,类似于java中的String数组,但是它是分布式的。Rdd中有各种算子,总的来说分为转化算子和行动算子,转换算子不触到真正的计算,当执行到行动算子时才会触
- 大数据组件笔记 -- Spark 入门
L小Ray想有腮
BigData
文章目录一、简介二、Spark运行模式2.1本地模式2.2集群角色2.3Standalone模式2.4Yarn模式2.5总结三、WordCount开发案例实操一、简介Spark是一种基于内存的快速、通用、可扩展的大数据分析计算引擎。Spark历史Spark虽然有自己的资源调度框架,但实际中常用Yarn来进行统一资源管理。Spark框架Spark内置模块SparkCore:实现了Spark的基本功能
- 2019-03-16 Spark基本架构及运行原理
做一只乐观的小猴子
SparkCore:包含Spark的基本功能,包含任务调度,内存管理,容错机制等,内部定义了RDDs(弹性分布式数据集),提供了很多APIs来创建和操作这些RDDs。为其他组件提供底层的服务。SparkSQL:Spark处理结构化数据的库,就像HiveSQL,Mysql一样,企业中用来做报表统计。SparkStreaming:实时数据流处理组件,类似Storm。SparkStreaming提供了A
- 大数据 - Spark系列《一》- 从Hadoop到Spark:大数据计算引擎的演进
王哪跑nn
spark大数据sparkhadoop
目录1.1Hadoop回顾1.2spark简介1.3Spark特性1.通用性2.简洁灵活3.多语言1.4SparkCore编程体验1.4.1spark开发工程搭建1.开发语言选择:2.依赖管理工具:1.4.2Spark编程流程1.获取sparkcontext对象2.加载数据3.处理转换数据4.输出结果,释放资源1.4.3简单代码实现-wordCount在大数据领域,Hadoop一直是一个重要的框架
- SparkCore之RDD---弹性分布式数据集
孤独の√ 3
大数据#spark分布式
目录:RDD的设计与运行原理一、RDD设计背景二、RDD概念1.什么是RDD?2.RDD的属性三、RDD特点1.可分区2.不可变3.依赖关系4.缓存(cache)5.检测点(CheckPoint)四、RDD的创建1.通过并行化的方式创建RDD2.读取文件生成RDD3.通过其他RDD转换五、RDD运行过程RDD的设计与运行原理Spark的核心是建立在统一的抽象RDD上的,使得Spark的各个组件可以
- Spark 的架构与组件
OpenChat
spark架构大数据分布式
1.背景介绍Spark是一个快速、通用的大规模数据处理框架,它可以处理批量数据和流式数据,支持多种数据源,并提供了丰富的数据处理功能。Spark的核心组件包括SparkCore、SparkSQL、SparkStreaming和MLlib等。本文将详细介绍Spark的架构和组件,并分析其优势和挑战。1.1Spark的诞生和发展Spark的诞生可以追溯到2008年,当时Netflix的工程师Matei
- Spark-core
luckboy0000
学习笔记
什么是SparkSpark是基于内存的快速,通用,可扩展的大数据分析引擎Spark的内置模块SparkCore是Spark可以离线处理的部分,实现了spark的基本功能,包含任务调度,错误恢复,与存储系统交互等模块。SparkCore中还包含了对弹性分布式数据集的APISparkSQL可以使用sql结构化语句来查询数据,支持多种数据源,hive,json等SparkStreaming是Spark对
- Pyspark
李明朔
机器学习spark-ml
文章目录一、SparkCore1.SparkContext:2.SparkSession3.RDD4.Broadcast、Accumulator:5.Sparkconf6.SparkFiles7.StorageLevel二、SparkSQL1.读取数据2.保存/写入数据3.Dataframes3.pysparkSQL函数三、SparkStreaming四、MLlib一、SparkCore在Spar
- (转)Spark Streaming遇到问题分析
达微
parkStreaming遇到问题分析1、Spark2.0之后搞了个StructuredStreaming还没仔细了解,可参考:https://github.com/lw-lin/Coo...2、Spark的Job与Streaming的Job有区别及StreamingJob并发控制:先看看SparkStreaming的JobSet,Job,与SparkCore的Job,Stage,TaskSet,
- Spark面试题
韩顺平的小迷弟
大数据面试题spark大数据分布式
1.sparkcore1.简述hadoop和spark的不同点(为什么spark更快)♥♥♥ shuffle都是需要落盘的,因为在宽依赖中需要将上一个阶段的所有分区数据都准备好,才能进入下一个阶段,那么如果一直将数据放在内存中,是非常耗费资源的MapReduce需要将计算的中间结果写入磁盘,然后还要读取磁盘,从而导致了频繁的磁盘IO;而spark不需要将计算中间结果写入磁盘,这得益于spark的
- Spark详解
武昌库里写JAVA
高手面试spark大数据分布式
Spark概念Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求。核心架构SparkCore包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和SparkCore之上的SparkSQL提供通过ApacheHive的SQL变体Hive查询语言(Hi
- Spark-之自定义wordCount累加器
稳哥的哥
Sparksparkscalabigdata
Spark-之自定义wordCount累加器SparkCore中的3种数据类型:累加器(只写)RDD广播变量(只读)累加器在多个action算子触发的job中重复累加,且需要action算子才能触发累加器操作。packagecom.shufang.accimportcom.shufang.utils.ScUtilimportorg.apache.spark.SparkContextimportor
- 71、Spark SQL之JDBC数据源复杂综合案例实战
ZFH__ZJ
JDBC数据源实战SparkSQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用SparkCore提供的各种算子进行处理。实际上用SparkSQL处理JDBC中的数据是非常有用的。比如说,你的MySQL业务数据库中,有大量的数据,比如1000万,然后,你现在需要编写一个程序,对线上的脏数据某种复杂业务逻辑的处理,甚至复杂到可能
- SparkCore阶段练习
我像影子一样
Spark大数据spark大数据
阶段练习查看数据集格式明确需求明确步骤读取文件抽取需要的列以年月为基础,进行reduceByKey统计Dongsi地区的PM排序获取结果编码拷贝数据集data.rar(已上传资源——SparkCore阶段练习数据集)创建类编写代码运行测试@TestdefpmProcess():Unit={ //1.创建sc对象 valconf=newSparkConf().setMaster("local[6]"
- 2024.1.8 Day04_SparkCore_homeWork
白白的wj
spark大数据分布式pythonhadoopbigdata
目录1.简述Spark持久化中缓存和checkpoint检查点的区别2.如何使用缓存和检查点?3.代码题浏览器Nginx案例先进行数据清洗,做后续需求用1、需求一:点击最多的前10个网站域名2、需求二:用户最喜欢点击的页面排序TOP103、需求三:统计每分钟用户搜索次数学生系统案例4.RDD依赖的分类5.简述DAG与Stage形成过程DAG:Stage:1.简述Spark持久化中缓存和checkp
- Spark SQL(六):JDBC数据源
雪飘千里
SparkSQL支持使用JDBC从关系型数据库(比如MySQL)中读取数据。读取的数据,依然由DataFrame表示,可以很方便地使用SparkCore提供的各种算子进行处理。实际上使用SparkSQL处理JDBC中的数据是非常有用的。比如说,我们的MySQL业务数据库中,有大量的数据,比如3000万,现在需要编写一个程序,对线上的脏数据进行某种复杂业务逻辑的处理(统计业务,算法变了后,就需要对所
- Spark基础解析(一)
有语忆语
大数据之Sparkspark大数据分布式
1、Spark概述1.1什么是Spark1.2Spark内置模块SparkCore:实现了Spark的基本功能,包含任务调度、内存管理、错误恢复、与存储系统交互等模块。SparkCore中还包含了对弹性分布式数据集(ResilientDistributedDataSet,简称RDD)的API定义。SparkSQL:是Spark用来操作结构化数据的程序包。通过SparkSQL,我们可以使用SQL或者
- SparkCore基础解析(二)
有语忆语
大数据之SparksparkSparkcoreRDD
1、RDD概述1.1什么是RDDRDD(ResilientDistributedDataset)叫做分布式数据集,是Spark中最基本的数据抽象。代码中是一个抽象类,它代表一个不可变、可分区、里面的元素可并行计算的集合。1.2RDD的属性1)一组分区(Partition),即数据集的基本组成单位;2)一个计算每个分区的函数;3)RDD之间的依赖关系;4)一个Partitioner,即RDD的分片函
- Spark与PySpark(1.概述、框架、模块)
还是那个同伟伟
Sparkspark大数据分布式python
目录1.Spark概念2.Hadoop和Spark的对比3.Spark特点3.1运行速度快3.2简单易用3.3通用性强3.4可以允许运行在很多地方4.Spark框架模块4.1SparkCore4.2SparkSQL4.3SparkStreaming4.4MLlib4.5GraphX5.Spark的运行模式5.1本地模式(单机)Local运行模式5.2Standalone模式(集群)5.3Hadoo
- SparkCore
weixin_50458070
大数据大数据
一、RDD详解1.1什么是RDDRDD(ResilientDistributedDataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,代表一个不可变、可分区、里面的元素可并行计算的集合。Dataset:一个数据集合,用于存放数据的。Distributed:RDD中的数据是分布式存储的,可用于分布式计算。Resilient:RDD中的数据可以存储在内存中或者磁盘中。1.2RDD的五大
- Spark Core
hipeer
SparkCore介绍SparkCore是Spark的核心计算引擎。它有着速度快和通用的特点,并且实现了Spark的基本功能,包含任务调度,内存管理,错误恢复,与存储交互等模块。SparkCore的组件是RDD,并提供了创建和操作RDD的多个API。Spark工作机制一个应用的生命周期,即用户提交自定义的作业之后,Spark框架进行处理的一系列过程。1.应用执行过程中的基本组件和形态Driver:
- ###好好好######Spark GraphX处理图数据
mishidemudong
SPARK
大数据呈现出不同的形态和大小。它可以是批处理数据,也可以是实时数据流;对前者需要离线处理,需要较多的时间来处理大量的数据行,产生结果和有洞察力的见解,而对后者需要实时处理并几乎同时生成对数据的见解。我们已经了解了如何将ApacheSpark应用于处理批数据(SparkCore)以及处理实时数据(SparkStreaming)。有时候,所需处理的数据是很自然地联系在一起的。譬如,在社交媒体应用中,有
- 大数据之Spark(4)- SparkCore(下)
jackyan163
1RDD编程1.1Action算子1.1.1reduce(func)作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。需求:创建一个RDD,将所有元素聚合得到结果。(1)创建一个RDD[Int]scala>valrdd1=sc.makeRDD(1to10,2)rdd1:org.apache.spark.rdd.RDD[Int]=ParallelCollectionR
- sparksql介绍
Guff_hys
sparksql大数据系统架构mapreduceeclipse程序人生
1.1SparkSQL介绍SparkSQL,顾名思义,就是Spark生态体系中的构建在SparkCore基础之上的一个基于SQL的计算模块。 SparkSQL的前身不叫SparkSQL,而叫Shark,最开始的时候底层代码优化,sql的解析、执行引擎等等完全基于Hive,总是Shark的执行速度要比Hive高出一个数量级,但是hive的发展制约了Shark,所以在15年中旬的时候,Shark负责人
- Spark---SparkCore(五)
30岁老阿姨
Sparkspark大数据分布式
五、SparkShuffle文件寻址1、Shuffle文件寻址1)、MapOutputTrackerMapOutputTracker是Spark架构中的一个模块,是一个主从架构。管理磁盘小文件的地址。MapOutputTrackerMaster是主对象,存在于Driver中。MapOutputTrackerWorker是从对象,存在于Excutor中。2)、BlockManagerBlockMan
- Spark---SparkCore(四)
30岁老阿姨
Sparkspark大数据分布式
三、SparkMasterHA1、Master的高可用原理Standalone集群只有一个Master,如果Master挂了就无法提交应用程序,需要给Master进行高可用配置,Master的高可用可以使用fileSystem(文件系统)和zookeeper(分布式协调服务)。fileSystem只有存储功能,可以存储Master的元数据信息,用fileSystem搭建的Master高可用,在Ma
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo