Spark SQL Catalyst源码分析之Analyzer

    /** Spark SQL源码分析系列文章*/

    前面几篇文章讲解了Spark SQL的核心执行流程和Spark SQL的Catalyst框架的Sql Parser是怎样接受用户输入sql,经过解析生成Unresolved Logical Plan的。我们记得Spark SQL的执行流程中另一个核心的组件式Analyzer,本文将会介绍Analyzer在Spark SQL里起到了什么作用。

    Analyzer位于Catalyst的analysis package下,主要职责是将Sql Parser 未能Resolved的Logical Plan 给Resolved掉。

    Spark SQL Catalyst源码分析之Analyzer_第1张图片

一、Analyzer构造

    Analyzer会使用Catalog和FunctionRegistry将UnresolvedAttribute和UnresolvedRelation转换为catalyst里全类型的对象。

    Analyzer里面有fixedPoint对象,一个Seq[Batch].

class Analyzer(catalog: Catalog, registry: FunctionRegistry, caseSensitive: Boolean)
  extends RuleExecutor[LogicalPlan] with HiveTypeCoercion {

  // TODO: pass this in as a parameter.
  val fixedPoint = FixedPoint(100)

  val batches: Seq[Batch] = Seq(
    Batch("MultiInstanceRelations", Once,
      NewRelationInstances),
    Batch("CaseInsensitiveAttributeReferences", Once,
      (if (caseSensitive) Nil else LowercaseAttributeReferences :: Nil) : _*),
    Batch("Resolution", fixedPoint,
      ResolveReferences ::
      ResolveRelations ::
      NewRelationInstances ::
      ImplicitGenerate ::
      StarExpansion ::
      ResolveFunctions ::
      GlobalAggregates ::
      typeCoercionRules :_*),
    Batch("AnalysisOperators", fixedPoint,
      EliminateAnalysisOperators)
  )
    Analyzer里的一些对象解释:

    FixedPoint:相当于迭代次数的上限。

  /** A strategy that runs until fix point or maxIterations times, whichever comes first. */
  case class FixedPoint(maxIterations: Int) extends Strategy

    Batch: 批次,这个对象是由一系列Rule组成的,采用一个策略(策略其实是迭代几次的别名吧,eg:Once)

  /** A batch of rules. */,
  protected case class Batch(name: String, strategy: Strategy, rules: Rule[TreeType]*)
    Rule:理解为一种规则,这种规则会应用到Logical Plan 从而将UnResolved 转变为Resolved

abstract class Rule[TreeType <: TreeNode[_]] extends Logging {

  /** Name for this rule, automatically inferred based on class name. */
  val ruleName: String = {
    val className = getClass.getName
    if (className endsWith "$") className.dropRight(1) else className
  }

  def apply(plan: TreeType): TreeType
}

    Strategy:最大的执行次数,如果执行次数在最大迭代次数之前就达到了fix point,策略就会停止,不再应用了。

  /**
   * An execution strategy for rules that indicates the maximum number of executions. If the
   * execution reaches fix point (i.e. converge) before maxIterations, it will stop.
   */
  abstract class Strategy { def maxIterations: Int }

   Analyzer解析主要是根据这些Batch里面定义的策略和Rule来对Unresolved的逻辑计划进行解析的。

   这里Analyzer类本身并没有定义执行的方法,而是要从它的父类RuleExecutor[LogicalPlan]寻找,Analyzer也实现了HiveTypeCosercion,这个类是参考Hive的类型自动兼容转换的原理。如图:

    Spark SQL Catalyst源码分析之Analyzer_第2张图片

    RuleExecutor:执行Rule的执行环境,它会将包含了一系列的Rule的Batch进行执行,这个过程都是串行的。

    具体的执行方法定义在apply里:

    可以看到这里是一个while循环,每个batch下的rules都对当前的plan进行作用,这个过程是迭代的,直到达到Fix Point或者最大迭代次数。

 def apply(plan: TreeType): TreeType = {
    var curPlan = plan

    batches.foreach { batch =>
      val batchStartPlan = curPlan
      var iteration = 1
      var lastPlan = curPlan
      var continue = true

      // Run until fix point (or the max number of iterations as specified in the strategy.
      while (continue) {
        curPlan = batch.rules.foldLeft(curPlan) {
          case (plan, rule) =>
            val result = rule(plan) //这里将调用各个不同Rule的apply方法,将UnResolved Relations,Attrubute和Function进行Resolve
            if (!result.fastEquals(plan)) {
              logger.trace(
                s"""
                  |=== Applying Rule ${rule.ruleName} ===
                  |${sideBySide(plan.treeString, result.treeString).mkString("\n")}
                """.stripMargin)
            }

            result //返回作用后的result plan
        }
        iteration += 1
        if (iteration > batch.strategy.maxIterations) { //如果迭代次数已经大于该策略的最大迭代次数,就停止循环
          logger.info(s"Max iterations ($iteration) reached for batch ${batch.name}")
          continue = false
        }

        if (curPlan.fastEquals(lastPlan)) { //如果在多次迭代中不再变化,因为plan有个unique id,就停止循环。
          logger.trace(s"Fixed point reached for batch ${batch.name} after $iteration iterations.")
          continue = false
        }
        lastPlan = curPlan
      }

      if (!batchStartPlan.fastEquals(curPlan)) {
        logger.debug(
          s"""
          |=== Result of Batch ${batch.name} ===
          |${sideBySide(plan.treeString, curPlan.treeString).mkString("\n")}
        """.stripMargin)
      } else {
        logger.trace(s"Batch ${batch.name} has no effect.")
      }
    }

    curPlan //返回Resolved的Logical Plan
  }

二、Rules介绍

    目前Spark SQL 1.0.0的Rule都定义在了Analyzer.scala的内部类。
    在batches里面定义了4个Batch。
    MultiInstanceRelations、CaseInsensitiveAttributeReferences、Resolution、AnalysisOperators 四个。
    这4个Batch是将不同的Rule进行归类,每种类别采用不同的策略来进行Resolve。
     Spark SQL Catalyst源码分析之Analyzer_第3张图片

2.1、MultiInstanceRelation 

如果一个实例在Logical Plan里出现了多次,则会应用NewRelationInstances这儿Rule
 Batch("MultiInstanceRelations", Once,
      NewRelationInstances)
trait MultiInstanceRelation {
  def newInstance: this.type
}
object NewRelationInstances extends Rule[LogicalPlan] { 
  def apply(plan: LogicalPlan): LogicalPlan = {
    val localRelations = plan collect { case l: MultiInstanceRelation => l} //将logical plan应用partial function得到所有MultiInstanceRelation的plan的集合 
    val multiAppearance = localRelations
      .groupBy(identity[MultiInstanceRelation]) //group by操作
      .filter { case (_, ls) => ls.size > 1 } //如果只取size大于1的进行后续操作
      .map(_._1)
      .toSet

    //更新plan,使得每个实例的expId是唯一的。
    plan transform {
      case l: MultiInstanceRelation if multiAppearance contains l => l.newInstance
    }
  }
}

2.2、LowercaseAttributeReferences

同样是partital function,对当前plan应用,将所有匹配的如UnresolvedRelation的别名alise转换为小写,将Subquery的别名也转换为小写。
总结:这是一个使属性名大小写不敏感的Rule,因为它将所有属性都to lower case了。
  object LowercaseAttributeReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case UnresolvedRelation(databaseName, name, alias) =>
        UnresolvedRelation(databaseName, name, alias.map(_.toLowerCase))
      case Subquery(alias, child) => Subquery(alias.toLowerCase, child)
      case q: LogicalPlan => q transformExpressions {
        case s: Star => s.copy(table = s.table.map(_.toLowerCase))
        case UnresolvedAttribute(name) => UnresolvedAttribute(name.toLowerCase)
        case Alias(c, name) => Alias(c, name.toLowerCase)()
        case GetField(c, name) => GetField(c, name.toLowerCase)
      }
    }
  }

2.3、ResolveReferences

将Sql parser解析出来的UnresolvedAttribute全部都转为对应的实际的catalyst.expressions.AttributeReference AttributeReferences
这里调用了logical plan 的resolve方法,将属性转为NamedExepression。
  object ResolveReferences extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transformUp {
      case q: LogicalPlan if q.childrenResolved =>
        logger.trace(s"Attempting to resolve ${q.simpleString}")
        q transformExpressions {
          case u @ UnresolvedAttribute(name) =>
            // Leave unchanged if resolution fails.  Hopefully will be resolved next round.
            val result = q.resolve(name).getOrElse(u)//转化为NamedExpression
            logger.debug(s"Resolving $u to $result")
            result
        }
    }
  }

2.4、 ResolveRelations

这个比较好理解,还记得前面Sql parser吗,比如select * from src,这个src表parse后就是一个UnresolvedRelation节点。
这一步ResolveRelations调用了catalog这个对象。Catalog对象里面维护了一个tableName,Logical Plan的HashMap结果。
通过这个Catalog目录来寻找当前表的结构,从而从中解析出这个表的字段,如UnResolvedRelations 会得到一个tableWithQualifiers。(即表和字段) 
这也解释了为什么流程图那,我会画一个catalog在上面,因为它是Analyzer工作时需要的meta data。
object ResolveRelations extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case UnresolvedRelation(databaseName, name, alias) =>
        catalog.lookupRelation(databaseName, name, alias)
    }
  }

2.5、ImplicitGenerate

如果在select语句里只有一个表达式,而且这个表达式是一个Generator(Generator是一个1条记录生成到N条记录的映射)
当在解析逻辑计划时,遇到Project节点的时候,就可以将它转换为Generate类(Generate类是将输入流应用一个函数,从而生成一个新的流)。
  object ImplicitGenerate extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case Project(Seq(Alias(g: Generator, _)), child) =>
        Generate(g, join = false, outer = false, None, child)
    }
  }


2.6 StarExpansion

在Project操作符里,如果是*符号,即select * 语句,可以将所有的references都展开,即将select * 中的*展开成实际的字段。
  object StarExpansion extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      // Wait until children are resolved
      case p: LogicalPlan if !p.childrenResolved => p
      // If the projection list contains Stars, expand it.
      case p @ Project(projectList, child) if containsStar(projectList) => 
        Project(
          projectList.flatMap {
            case s: Star => s.expand(child.output) //展开,将输入的Attributeexpand(input: Seq[Attribute]) 转化为Seq[NamedExpression]
            case o => o :: Nil
          },
          child)
      case t: ScriptTransformation if containsStar(t.input) =>
        t.copy(
          input = t.input.flatMap {
            case s: Star => s.expand(t.child.output)
            case o => o :: Nil
          }
        )
      // If the aggregate function argument contains Stars, expand it.
      case a: Aggregate if containsStar(a.aggregateExpressions) =>
        a.copy(
          aggregateExpressions = a.aggregateExpressions.flatMap {
            case s: Star => s.expand(a.child.output)
            case o => o :: Nil
          }
        )
    }
    /**
     * Returns true if `exprs` contains a [[Star]].
     */
    protected def containsStar(exprs: Seq[Expression]): Boolean =
      exprs.collect { case _: Star => true }.nonEmpty
  }
}

2.7 ResolveFunctions

这个和ResolveReferences差不多,这里主要是对udf进行resolve。
将这些UDF都在FunctionRegistry里进行查找。
  object ResolveFunctions extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case q: LogicalPlan =>
        q transformExpressions {
          case u @ UnresolvedFunction(name, children) if u.childrenResolved =>
            registry.lookupFunction(name, children) //看是否注册了当前udf
        }
    }
  }

2.8 GlobalAggregates

全局的聚合,如果遇到了Project就返回一个Aggregate.
  object GlobalAggregates extends Rule[LogicalPlan] {
    def apply(plan: LogicalPlan): LogicalPlan = plan transform {
      case Project(projectList, child) if containsAggregates(projectList) =>
        Aggregate(Nil, projectList, child)
    }

    def containsAggregates(exprs: Seq[Expression]): Boolean = {
      exprs.foreach(_.foreach {
        case agg: AggregateExpression => return true
        case _ =>
      })
      false
    }
  }

2.9 typeCoercionRules

这个是Hive里的兼容SQL语法,比如将String和Int互相转换,不需要显示的调用cast xxx  as yyy了。如StringToIntegerCasts。
  val typeCoercionRules =
    PropagateTypes ::
    ConvertNaNs ::
    WidenTypes ::
    PromoteStrings ::
    BooleanComparisons ::
    BooleanCasts ::
    StringToIntegralCasts ::
    FunctionArgumentConversion ::
    CastNulls ::
    Nil

2.10 EliminateAnalysisOperators

将分析的操作符移除,这里仅支持2种,一种是Subquery需要移除,一种是LowerCaseSchema。这些节点都会从Logical Plan里移除。

object EliminateAnalysisOperators extends Rule[LogicalPlan] {
  def apply(plan: LogicalPlan): LogicalPlan = plan transform {
    case Subquery(_, child) => child //遇到Subquery,不反悔本身,返回它的Child,即删除了该元素
    case LowerCaseSchema(child) => child
  }
}

三、实践

  补充昨天DEBUG的一个例子,这个例子证实了如何将上面的规则应用到Unresolved Logical Plan:
  当传递sql语句的时候,的确调用了ResolveReferences将mobile解析成NamedExpression。
  可以对照这看执行流程,左边是Unresolved Logical Plan,右边是Resoveld Logical Plan。
  先是执行了Batch Resolution,eg: 调用ResovelRalation这个RUle来使 Unresovled Relation 转化为 SparkLogicalPlan并通过Catalog找到了其对于的字段属性。
  然后执行了Batch Analysis Operator。eg:调用EliminateAnalysisOperators来将SubQuery给remove掉了。
  可能格式显示的不太好,可以向右边拖动下滚动轴看下结果。 :) 
  
val exec = sqlContext.sql("select mobile as mb, sid as id, mobile*2 multi2mobile, count(1) times from (select * from temp_shengli_mobile)a where pfrom_id=0.0 group by mobile, sid,  mobile*2")
14/07/21 18:23:32 DEBUG SparkILoop$SparkILoopInterpreter: Invoking: public static java.lang.String $line47.$eval.$print()
14/07/21 18:23:33 INFO Analyzer: Max iterations (2) reached for batch MultiInstanceRelations
14/07/21 18:23:33 INFO Analyzer: Max iterations (2) reached for batch CaseInsensitiveAttributeReferences
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'pfrom_id to pfrom_id#5
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'mobile to mobile#2
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'sid to sid#1
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'mobile to mobile#2
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'mobile to mobile#2
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'sid to sid#1
14/07/21 18:23:33 DEBUG Analyzer$ResolveReferences$: Resolving 'mobile to mobile#2
14/07/21 18:23:33 DEBUG Analyzer: 
=== Result of Batch Resolution ===
!Aggregate ['mobile,'sid,('mobile * 2) AS c2#27], ['mobile AS mb#23,'sid AS id#24,('mobile * 2) AS multi2mobile#25,COUNT(1) AS times#26L]   Aggregate [mobile#2,sid#1,(CAST(mobile#2, DoubleType) * CAST(2, DoubleType)) AS c2#27], [mobile#2 AS mb#23,sid#1 AS id#24,(CAST(mobile#2, DoubleType) * CAST(2, DoubleType)) AS multi2mobile#25,COUNT(1) AS times#26L]
! Filter ('pfrom_id = 0.0)                                                                                                                   Filter (CAST(pfrom_id#5, DoubleType) = 0.0)
   Subquery a                                                                                                                                 Subquery a
!   Project [*]                                                                                                                                Project [data_date#0,sid#1,mobile#2,pverify_type#3,create_time#4,pfrom_id#5,p_status#6,pvalidate_time#7,feffect_time#8,plastupdate_ip#9,update_time#10,status#11,preserve_int#12]
!    UnresolvedRelation None, temp_shengli_mobile, None                                                                                         Subquery temp_shengli_mobile
!                                                                                                                                                SparkLogicalPlan (ExistingRdd [data_date#0,sid#1,mobile#2,pverify_type#3,create_time#4,pfrom_id#5,p_status#6,pvalidate_time#7,feffect_time#8,plastupdate_ip#9,update_time#10,status#11,preserve_int#12], MapPartitionsRDD[4] at mapPartitions at basicOperators.scala:174)
        
14/07/21 18:23:33 DEBUG Analyzer: 
=== Result of Batch AnalysisOperators ===
!Aggregate ['mobile,'sid,('mobile * 2) AS c2#27], ['mobile AS mb#23,'sid AS id#24,('mobile * 2) AS multi2mobile#25,COUNT(1) AS times#26L]   Aggregate [mobile#2,sid#1,(CAST(mobile#2, DoubleType) * CAST(2, DoubleType)) AS c2#27], [mobile#2 AS mb#23,sid#1 AS id#24,(CAST(mobile#2, DoubleType) * CAST(2, DoubleType)) AS multi2mobile#25,COUNT(1) AS times#26L]
! Filter ('pfrom_id = 0.0)                                                                                                                   Filter (CAST(pfrom_id#5, DoubleType) = 0.0)
!  Subquery a                                                                                                                                 Project [data_date#0,sid#1,mobile#2,pverify_type#3,create_time#4,pfrom_id#5,p_status#6,pvalidate_time#7,feffect_time#8,plastupdate_ip#9,update_time#10,status#11,preserve_int#12]
!   Project [*]                                                                                                                                SparkLogicalPlan (ExistingRdd [data_date#0,sid#1,mobile#2,pverify_type#3,create_time#4,pfrom_id#5,p_status#6,pvalidate_time#7,feffect_time#8,plastupdate_ip#9,update_time#10,status#11,preserve_int#12], MapPartitionsRDD[4] at mapPartitions at basicOperators.scala:174)
!    UnresolvedRelation None, temp_shengli_mobile, None                                                                                     
        

四、总结

    本文从源代码角度分析了Analyzer在对Sql Parser解析出的UnResolve Logical Plan 进行analyze的过程中,所执行的流程。
    流程是实例化一个SimpleAnalyzer,定义一些Batch,然后遍历这些Batch在RuleExecutor的环境下,执行Batch里面的Rules,每个Rule会对Unresolved Logical Plan进行Resolve,有些可能不能一次解析出,需要多次迭代,直到达到max迭代次数或者达到fix point。这里Rule里比较常用的就是ResolveReferences、ResolveRelations、StarExpansion、GlobalAggregates、typeCoercionRules和EliminateAnalysisOperators。


——EOF——

原创文章,转载请注明:

转载自:OopsOutOfMemory盛利的Blog,作者: OopsOutOfMemory

本文链接地址:http://blog.csdn.net/oopsoom/article/details/38025185

注:本文基于署名-非商业性使用-禁止演绎 2.5 中国大陆(CC BY-NC-ND 2.5 CN)协议,欢迎转载、转发和评论,但是请保留本文作者署名和文章链接。如若需要用于商业目的或者与授权方面的协商,请联系我。


你可能感兴趣的:(spark,Spark,SQL源码分析系列)