redis源码解读之哈希接口————dict.h文件

这篇文章主要是介绍redis的哈希的函数的相关。

哈希算法是以空间换时间的一个做法,效率基本是等于O(1).所以,不管什么项目,哈希在项目中的作用是绝对的重要,我在上一个tx的游戏项目里就大量的使用了哈希算法。


1、redis的大致的数据结构以及关系。(转)

redis源码解读之哈希接口————dict.h文件_第1张图片




2、数据结构实现


2.1、hash算法回调函数

typedef struct dictType {
    unsigned int (*hashFunction)(const void *key);
    void *(*keyDup)(void *privdata, const void *key);
    void *(*valDup)(void *privdata, const void *obj);
    int (*keyCompare)(void *privdata, const void *key1, const void *key2);
    void (*keyDestructor)(void *privdata, void *key);
    void (*valDestructor)(void *privdata, void *obj);
} dictType;

该数据结构,用来指定hash算法的一些回调函数,比如key 比较,复制等。

2.2 hash字典

该结构体,主要是hash的头部分吧。

typedef struct dict {
    dictType *type;//上边的type,为不同数据类型hash使用的回调函数,
    void *privdata;
    dictht ht[2]; //使用的两个hash表,主要是用来旧的到新的转换
    int rehashidx; /* rehashing not in progress if rehashidx == -1 */是否在使用
    int iterators; /* number of iterators currently running */数量
} dict;

hash表的结构体如下

typedef struct dictht {
    dictEntry **table;
    unsigned long size;
    unsigned long sizemask;
    unsigned long used;
} dictht;


table 属性组成了一个数组,数组里带有节点指针,用作链表。

size 、 sizemask 和 used 这三个属性初看上去让人有点头晕,实际上,它们分别代表的是:

size :桶的数量,也即是, table 数组的大小。

sizemask :这个值通过 size – 1 计算出来,给定 key 的哈希值计算出来之后,就会和这个数值进行 & 操作,决定元素被放到 table 数组的那一个位置上。

used :这个值代表目前哈希表中元素的数量,也即是哈希表总共保存了多少 dictEntry 结构。


hash表的迭代器


/* If safe is set to 1 this is a safe iterator, that means, you can call
 * dictAdd, dictFind, and other functions against the dictionary even while
 * iterating. Otherwise it is a non safe iterator, and only dictNext()
 * should be called while iterating. */
typedef struct dictIterator {
    dict *d;
    int table, index, safe;
    dictEntry *entry, *nextEntry;
    long long fingerprint; /* unsafe iterator fingerprint for misuse detection */
} dictIterator;

下面是围绕这些数据结构如何来使用的呢?


2.使用

2.1创建并初始化

/* Create a new hash table */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = zmalloc(sizeof(*d));

    _dictInit(d,type,privDataPtr);
    return d;
}

如果我们想创建一个hash表,直接调用该接口使用,

使用案例:

    server.commands = dictCreate(&commandTableDictType,NULL);
    server.orig_commands = dictCreate(&commandTableDictType,NULL);

调用流程为:

dict *dictCreate(dictType *type,void *privDataPtr)
int _dictInit(dict *d, dictType *type,void *privDataPtr)
static void _dictReset(dict *ht)

这样,我就创建好了一个hash表


2.2 添加扩容方案

使用hash,真正分配内存是在,

/* Low level add. This function adds the entry but instead of setting
 * a value returns the dictEntry structure to the user, that will make
 * sure to fill the value field as he wishes.
 *
 * This function is also directly exposed to user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned.
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key)
{
    int index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(d, key)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    entry = zmalloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
    ht->used++;

    /* Set the hash entry fields. */
    dictSetKey(d, entry, key);
    return entry;
}

这里使用了比较特别的方案就是rehash方案。

我理解的思路就是动态扩展内存的方案,如果需要扩展,就调用,

/* Expand or create the hashtable */
static int dictExpand(dict *ht, unsigned long size) {
    dict n; /* the new hashtable */
    unsigned long realsize = _dictNextPower(size), i;

    /* the size is invalid if it is smaller than the number of
     * elements already inside the hashtable */
    if (ht->used > size)
        return DICT_ERR;

    _dictInit(&n, ht->type, ht->privdata);
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = calloc(realsize,sizeof(dictEntry*));

    /* Copy all the elements from the old to the new table:
     * note that if the old hash table is empty ht->size is zero,
     * so dictExpand just creates an hash table. */
    n.used = ht->used;
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if (ht->table[i] == NULL) continue;

        /* For each hash entry on this slot... */
        he = ht->table[i];
        while(he) {
            unsigned int h;

            nextHe = he->next;
            /* Get the new element index */
            h = dictHashKey(ht, he->key) & n.sizemask;
            he->next = n.table[h];
            n.table[h] = he;
            ht->used--;
            /* Pass to the next element */
            he = nextHe;
        }
    }
    assert(ht->used == 0);
    free(ht->table);

    /* Remap the new hashtable in the old */
    *ht = n;
    return DICT_OK;
}

方法,如果内存不够,也同样调用该方法,

当 Hash Table 使用率低于 10%,同样会执行 resize 操作以节省内存。

2.3hash函数

/* Thomas Wang's 32 bit Mix Function */
unsigned int dictIntHashFunction(unsigned int key)
{
    key += ~(key << 15);
    key ^=  (key >> 10);
    key +=  (key << 3);
    key ^=  (key >> 6);
    key += ~(key << 11);
    key ^=  (key >> 16);
    return key;
}

/* Identity hash function for integer keys */
unsigned int dictIdentityHashFunction(unsigned int key)
{
    return key;
}

static uint32_t dict_hash_function_seed = 5381;

void dictSetHashFunctionSeed(uint32_t seed) {
    dict_hash_function_seed = seed;
}

uint32_t dictGetHashFunctionSeed(void) {
    return dict_hash_function_seed;
}

/* MurmurHash2, by Austin Appleby
 * Note - This code makes a few assumptions about how your machine behaves -
 * 1. We can read a 4-byte value from any address without crashing
 * 2. sizeof(int) == 4
 *
 * And it has a few limitations -
 *
 * 1. It will not work incrementally.
 * 2. It will not produce the same results on little-endian and big-endian
 *    machines.
 */
unsigned int dictGenHashFunction(const void *key, int len) {
    /* 'm' and 'r' are mixing constants generated offline.
     They're not really 'magic', they just happen to work well.  */
    uint32_t seed = dict_hash_function_seed;
    const uint32_t m = 0x5bd1e995;
    const int r = 24;

    /* Initialize the hash to a 'random' value */
    uint32_t h = seed ^ len;

    /* Mix 4 bytes at a time into the hash */
    const unsigned char *data = (const unsigned char *)key;

    while(len >= 4) {
        uint32_t k = *(uint32_t*)data;

        k *= m;
        k ^= k >> r;
        k *= m;

        h *= m;
        h ^= k;

        data += 4;
        len -= 4;
    }

    /* Handle the last few bytes of the input array  */
    switch(len) {
    case 3: h ^= data[2] << 16;
    case 2: h ^= data[1] << 8;
    case 1: h ^= data[0]; h *= m;
    };

    /* Do a few final mixes of the hash to ensure the last few
     * bytes are well-incorporated. */
    h ^= h >> 13;
    h *= m;
    h ^= h >> 15;

    return (unsigned int)h;
}

/* And a case insensitive hash function (based on djb hash) */
unsigned int dictGenCaseHashFunction(const unsigned char *buf, int len) {
    unsigned int hash = (unsigned int)dict_hash_function_seed;

    while (len--)
        hash = ((hash << 5) + hash) + (tolower(*buf++)); /* hash * 33 + c */
    return hash;
}

不同数据类型,使用的hash函数不同。我之前比较常用的就是对cha* 进行hash。





你可能感兴趣的:(Nginx学习,C/C++学习,数据结构和算法学习,设计模式学习,redis源码学习)