最近在看目标跟踪的东西,写了一个最基本的opencv实现的程序,没有用到深度的东西,不过这是一个基础,任何深度的东西都是在这上面进行的,所以先搞懂这个demo吧哈哈。
基本工作流程是:
1)检查第一帧
2)检查后面输入的帧,从场景的开始通过背景分割器来识别场景中的行人
3)为每个行人建立ROI,并利用Kalman/CAMShift来跟踪行人ID
4)检查下一帧是否有进入场景的新行人
import cv2
import numpy as np
import os.path as path
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-a", "--algorithm",
help = "m (or nothing) for meanShift and c for camshift")
args = vars(parser.parse_args())
def center(points):
x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4
y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4
return np.array([np.float32(x), np.float32(y)], np.float32)
font = cv2.FONT_HERSHEY_SIMPLEX
class Pedestrian():
def __init__(self, id, frame, track_window):
self.id = int(id)
x, y, w, h = track_window
self.track_window = track_window
self.roi = cv2.cvtColor(frame[y:y+h, x:x+w], cv2.COLOR_BGR2HSV)
roi_hist = cv2.calcHist([self.roi], [0], None, [16], [0, 180])
self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
self.kalman = cv2.KalmanFilter(4, 2)
self.kalman.measurementMatrix = np.array([[1, 0, 0, 0], [0, 1, 0, 0]], np.float32)
self.kalman.processNoiseCov = np.array([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], np.float32) * 0.03
self.measurement = np.zeros((2, 1), np.float32)
self.prediction = np.zeros((2, 1), np.float32)
self.term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1) #停止条件
self.center = None
self.update(frame)
def __del__(self):
print("Pedestrian %d destroyed" %self.id)
def update(self, frame):
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
back_project = cv2.calcBackProject([hsv], [0], self.roi_hist, [0, 180], 1)
if args.get("algorithm") == "c":
ret, self.track_window = cv2.CamShift(back_project, self.track_window, self.term_crit)
pts = cv2.boxPoints(ret)
pts = np.int0(pts)
self.center = center(pts)
cv2.polylines(frame, [pts], True, 255, 1)
if not args.get("algorithm") or args.get("algorithm") == "m":
ret, self.track_window = cv2.meanShift(back_project, self.track_window, self.term_crit)
x, y, w, h = self.track_window
self.center = center([[x, y], [x+w, y], [x, y+h], [x+w, y+h]])
cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2)
self.kalman.correct(self.center)
prediction = self.kalman.predict()
cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (255, 0, 0), -1)
def main():
camera = cv2.VideoCapture("E:/768x576.avi")
history = 20
bs = cv2.createBackgroundSubtractorKNN()
cv2.namedWindow("surveillance")
pedestrians = {}
firstFrame = True
frames = 0
while True:
grabbed, frame = camera.read()
if (grabbed is False):
print ("failed to grab frame.")
break
fgmask = bs.apply(frame) #前景掩码
if frames < history:
frames += 1
continue
th = cv2.threshold(fgmask.copy(), 127, 255, cv2.THRESH_BINARY)[1]
th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations = 2)
dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations = 2)
image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
counter = 0
for c in contours:
if cv2.contourArea(c) > 50:
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 1)
if firstFrame is True:
pedestrians[counter] = Pedestrian(counter, frame, (x, y, w, h))
counter += 1
for i, p in pedestrians.items():
p.update(frame)
firstFrame = False
frames += 1
cv2.imshow("surveillance", frame)
#out.write(frame)
if cv2.waitKey(110) & 0xff == 27:
break
camera.release()
if __name__ == "__main__":
main()