BP神经网络原理和算法推导流程(吴恩达机器学习)

1  反向传播算法和BP网络简介

    误差反向传播算法简称反向传播算法(即BP算法)。使用反向传播算法的多层感知器又称为BP神经网络。BP算法是一个迭代算法,它的基本思想为:(1)先计算每一层的状态和激活值,直到最后一层(即信号是前向传播的);(2)计算每一层的误差,误差的计算过程是从最后一层向前推进的(这就是反向传播算法名字的由来);(3)更新参数(目标是误差变小)。迭代前面两个步骤,直到满足停止准则(比如相邻两次迭代的误差的差别很小)。
本文的记号说明:

BP神经网络原理和算法推导流程(吴恩达机器学习)_第1张图片

下面以三层感知器(即只含有一个隐藏层的多层感知器)为例介绍“反向传播算法(BP 算法)”。

BP神经网络原理和算法推导流程(吴恩达机器学习)_第2张图片

2 信息前向传播

BP神经网络原理和算法推导流程(吴恩达机器学习)_第3张图片

3 误差反向传播

  我个人的理解神经网络中引入BP算法主要原因是当样本太多和隐藏层太多时,参数w就会变得会多,如果用梯度下降算法一层层的更新十分麻烦,所以就引入BP算法来从下一层得到上一层的误差,方便进行参数迭代。

 

BP神经网络原理和算法推导流程(吴恩达机器学习)_第4张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第5张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第6张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第7张图片BP神经网络原理和算法推导流程(吴恩达机器学习)_第8张图片BP神经网络原理和算法推导流程(吴恩达机器学习)_第9张图片BP神经网络原理和算法推导流程(吴恩达机器学习)_第10张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第11张图片

 

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------在这里说明下,上面用到的最小二乘式的损失函数是因为它简单,实际上用的时候效果不咋滴。

因为激活函数作用时,所用的激活函数应具备“非饱和性”。如果激活函数是饱和的,带来的缺陷就是系统迭代更新变慢,系统收敛就慢,当然这是可以有办法弥补的,一种方法是使用交叉熵函数作为损失函数。
交叉熵做为代价函数能解决上述问题,是因为它在计算误差对输入的梯度时,抵消掉了激活函数的导数项,从而避免了因为激活函数的“饱和性”给系统带来的负面影响。如果项了解更详细的证明可以点https://blog.csdn.net/lanchunhui/article/details/50086025

神经网络中的损失函数和激活函数集合:https://blog.csdn.net/qq_27248897/article/details/77071027

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------补充BP神经网络作业OCTAVE代码

1.Loading and Visualizing Data

BP神经网络原理和算法推导流程(吴恩达机器学习)_第12张图片

2.Compute Cost

BP神经网络原理和算法推导流程(吴恩达机器学习)_第13张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第14张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第15张图片

3.Sigmoid Gradient

BP神经网络原理和算法推导流程(吴恩达机器学习)_第16张图片

4.computeNumericalGradient

BP神经网络原理和算法推导流程(吴恩达机器学习)_第17张图片

5.debugInitializeWeights

BP神经网络原理和算法推导流程(吴恩达机器学习)_第18张图片

6.checkNNGradients

BP神经网络原理和算法推导流程(吴恩达机器学习)_第19张图片

7.predict

BP神经网络原理和算法推导流程(吴恩达机器学习)_第20张图片

8.脚本ex4

BP神经网络原理和算法推导流程(吴恩达机器学习)_第21张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第22张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第23张图片

BP神经网络原理和算法推导流程(吴恩达机器学习)_第24张图片

你可能感兴趣的:(机器学习)