感知器分类算法

Implementing a perceptron learning algorithm in Python

Define a Class

import numpy as np
class Perceptron:
    """
    w_: weight
    errors_: errors
    
    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter
    
    def fit(self, X, y):
        self.w_ = np.zeros(1+X.shape[1])
        self.errors_ = []
        
        for _ in range(self.n_iter):
            errors = 0
            for xi, target in zip(X,y):
                update = self.eta*(target - self.predict(xi))
                self.w_[1:] += update*xi
                self.w_[0] += update
                errors += int(update!=0.0)
            self.errors_.append(errors)
        return self
    
    def net_input(self, X):
        return np.dot(X, self.w_[1:]) + self.w_[0]
    
    def predict(self, X):
        return np.where(self.net_input(X)>=0.0, 1, -1)

Training a perceptron model on the Iris dataset

import pandas as pd
df = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', header=None)

We extract the first 100 class labels that correspond to 50 Iris-Setosa and 50 Iris-Versicolor flowers.

%matplotlib inline

import matplotlib.pyplot as plt
import numpy as np


y= df.iloc[0:100, 4].values
y = np.where(y=='Iris-setosa', 1, -1)
X = df.iloc[0:100, [0,2]].values
plt.scatter(X[:50, 0],X[:50,1], color='red', marker='o', label='setosa')
plt.scatter(X[50:100, 0], X[50:100, 1],color='blue', marker='o', label='versicolor')
plt.xlabel('petal length')
plt.ylabel('sepal length')
plt.legend(loc='upper left')

plt.show()


To train our perceptron algorithm, plot the misclassification error

ppn = Perceptron(eta=0.01, n_iter = 10)

ppn.fit(X, y)
plt.plot(range(1,len(ppn.errors_)+1), ppn.errors_, marker='o')
plt.xlabel('Epochs')
plt.ylabel('Number of misclassification')

plt.show()


Visualize the decision boundaries for 2D datasets

from matplotlib.colors import ListedColormap


def plot_decision_regions(X, y, classifier, resolution=0.02):
    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])
    
    #plot the decision surface
    x1_min, x1_max = X[:,0].min()-1,X[:, 0].max() +1
    x2_min, x2_max = X[:,1].min()-1,X[:, 1].max() +1
    xx1, xx2 = np.meshgrid(np.arange(x1_min,x1_max, resolution), np.arange(x2_min,x2_max,resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())
    
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x= X[y==cl, 0],y= X[y==cl,1], alpha=0.8, c=cmap(idx), marker=markers[idx], label=cl)

        

plot_decision_regions(X, y, classifier = ppn)
plt.xlabel('sepal length [cm]')
plt.ylabel('petal length [cm]')
plt.legend(loc='upper left')
plt.show()


你可能感兴趣的:(人工智能优化算法)