高数 08.06 微分方程习题课 01

微分方程习题课01
一、考试内容
1、常微分方程的基本概念
2、变量可分离方程
3、齐次微分方程
4、一阶线性微分方程
二、考试要求
1、了解常微分方程及其阶、解、通解、初始条件和特解的概念
2、掌握变量可分离的微分方程、一阶线性微分方程的求解方法
3、会解齐次微分方程
三、基本知识
1、微分方程的概念
2、变量可分离方程
dydx=f(x)g(y)dyg(y)=f(x)dx
3、齐次微分方程
dydx=f(yx)u=yx,y=u+xu
4、一阶线性微分方程
y+P(x)y=Q(x):y=eP(x)dx[C+Q(x)eP(x)dxdx]

xx+P(y)x=Q(y):x=eP(y)dy[C+Q(y)eP(y)dydy]

(一)单选题
1.,(  C  )
A.xsin(xy)dy+ydy=0B.y=ln(x+y)C.dydx=xsinyD.y+1xy=exy2

2.(yx3)dx+xdy=2xydx+x2dy(  C  )
A.B.C.线D.
(yx3)dx+xdy=2xydx+x2dydydx=yx32xyx2xdydx+2x1x2xy=x3x2x线

3.y=ex2(  C  )
A.y=e12x+CB.y=e12x+CC.y=2e12x+CD.y=Ce12x
:y=ex2dx=2ex2d(x2)=2ex2+C

4.yy=1(  C  )
A.y=CexB.y=Cex+1C.y=Cex1D.y=(C+1)ex
P(x)=1,Q(x)=1y=eP(x)dx[C+Q(x)eP(x)dxdx]=e1dx[C+1e1dxdx]=ex[Cex]=Cex1

5.{xy+y=3y|x=1=0(  A  )
A.y=3(11x)B.y=3(1x)C.y=11xD.y=1x
xy+6=3y+1xy=3xP(x)=1x,Q(x)=3x,y=eP(x)dx[C+Q(x)eP(x)dxdx]=e1xdx[C+3xe1xdxdx]=1x[C+3xxdx]=1x[C+3x]y|x=1=0,11[C+31]=0,C=3y==1x[3+3x]y=3(11x)

(二)填空题
6.d2xdy2+xy=0,  y  ,  x  ,  2  

7.t(x)22tx+t=0  t  ,  x  ,  1  

8.xyy+x(y)3y4y=0  2  

9.dydx=e2xy    
:eydy=e2xdx

10.(y26x)y+2y=0  线  
:(y26x)y+2y=0dydx=2y6xy2dxdy=6xy22ydxdy3yx=12yP(y)=3y,Q(x)=1yyy线

11.xyyy2x2=0    
:xyyy2x2=0y=yx+(yx)21(x>0)y=yx(yx)21(x<0)

12.y2y=0  y=Ce2x  
:dyy=2dxdyy=2dxlny=2x+C1y=e2x+C1=eC1e2x=Ce2x

13.ylnxdx=xlnydyy|x=1=1  lny=±lnx  
:ylnxdx=xlnydylnydyy=lnxdxxlnydyy=lnxdxxlnydlny=lnxdlnx12(lny)2=12(lnx)2+Cy|x=1=1C=0lny=±lnx

14.ysinx=ylny,y|x=π2=e  y=etanx2  
:ysinx=ylnydyylny=dxsinxdyylny=dxsinxdlnylny=dxsinxln(lny)=cscxdxln(lny)=ln(tanx2)+Cy|x=π2=e0=0+C,C=0ln(lny)=ln(tanx2)lny=tanx2y=etanx2

(三)解答题
15.dydx=yx.
:dyy=dxxdyy=dxxlny=lnx+C1y=elnx+C1)=eC1elnx=C1x(C)

16.dydx=e2xy,y(0)=0
:dydx=e2xyeydy=e2xdxeydy=e2xdxdey=12de2xey=12e2x+C:y=ln(12e2x+C)y(0)=0,1=12+C,C=12:y=lne2x+12

17.(1+y2)xdx+(1+x2)ydy=0
:(1+y2)xdx+(1+x2)ydy=0dydx=(1+y2)x(1+x2)ydy2dx2=1+y21+x2d(y2+1)d(x2+1)=1+y21+x2d(y2+1)y2+1=d(x2+1)x2+1d(y2+1)y2+1=d(x2+1)x2+1ln(y2+1)=ln(x2+1)+C1(x2+1)(y2+1)=eC1(x2+1)(y2+1)=C

18.(xy2+x)dx+(yx2y)dy=0
:(xy2+x)dx+(yx2y)dy=0ydyy2+1=xdxx21ydyy2+1=xdxx2112dy2y2+1=12dx2x21d(y2+1)y2+1=d(x21)x21ln(y2+1)=ln(x21)+C1lny2+1x21=C1y2+1x21=C(C>0):x±1

19.(1+ex)yy=exy(1)=1
::ydy=ex1+exdxydy=ex1+exdxd(12y2)=11+exd(1+ex)12y2=ln(1+ex)+C1y2=2ln(1+ex)+Cy(1)=1,12=2ln(1+e1)+C,C=12ln(1+e):y2=2ln(1+ex)+12ln(1+e)

20.dydx=y2xyx2
::dxdy=xyx2y2dxdy=xy(xy)2u=xy,u+uy=x=uu2dyy=duu2dyy=duu2lny=1ulnC1lnC1y=yxy=Ceyx

21.y=yx+tanyx,y(1)=πy
:u=yx,u+ux=y=u+tanudutanu=dxxdutanu=dxxlnsinu=lnx+lnCsinu=Cxsinyx=Cxy(1)=π6,C=sinπ6=12:x=2sinyx

22.(1+exy)ydx+(yx)dy=0
:dxdy=xy11+exyu=xy,u+uy=x=u11+euuy=u1uueu1+eu=1ueu1+eu=euueu+1dueu+ueu+1=dyy(eu+1)dueu+u=dyy(eu+1)dueu+u=dyyln(eu+u)=lny+lnClny(eu+u)=lnCy(eu+u)=Cyexy+x=C

23.dydx+2y=4x
使线:P(x)=2,Q(x)=4xy=eP(x)dx[C+Q(x)eP(x)dxdx]=e2dx[C+4xe2dxdx]=e2x[C+4xe2xdx]=e2x[C+(2x)e2xd(2x)]=e2x[C+(2x)de2x]=e2x[C+2xe2xe2xd(2x)]=e2x[C+2xe2xe2x]=Ce2x+2x1(C)

24.dydx+y=ex

你可能感兴趣的:(高数)