- 深度学习--机器学习相关(2)
在下小天n
深度学习深度学习机器学习人工智能
1.适应性矩估计适应性矩估计(AdaptiveMomentEstimation,Adam)是一种可以代替传统的梯度下降(SGD和MBGD)的优化算法。Adam算法结合了适应性梯度算法和均方根传播的优点。Momentum在学习机器学习时是很可能遇到的,是动量的意思。动量不是速度和学习率,应该说是类似于加速度。AdaGrad(适应性梯度算法)适应性梯度算法的特点在于:独立地调整每一个参数的学习率。在S
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 【机器学习案例6】使用机器学习从图像中提取突出的颜色(含源码)
suoge223
机器学习实用指南机器学习人工智能python
专栏导读作者介绍:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 【机器学习案例7】计算机视觉中的小物体检测:基于补丁的方法
suoge223
机器学习实用指南机器学习计算机视觉人工智能
专栏导读作者简介:工学博士,高级工程师,专注于工业软件算法研究本文已收录于专栏:《机器学习实用指南》本专栏旨在提供1.机器学习经典案例及源码;2.开源机器学习训练数据集;3.机器学习前沿专业博文。以案例的形式从实用的角度出发,快速上手机器学习项目,在案例中成长,摆脱按部就班填鸭式教学。欢迎订阅专栏,订阅用户可私聊进入机器学习交流群(知识交流、问题解答),并获赠丰厚的机器学习相关学习资料(教材、源码
- 机器学习相关指标计算
miliyah
机器学习相关的科学计算指标其实本人也不精通上代码:#!/usr/bin/envpython#coding=utf-8importnumpyasnpfromsklearn.metricsimport*importmatplotlib.pyplotaspltdefmathematical_calculation(data_list1,data_list2=[]):"""1.误差errors:x1-x2
- 面向智算服务,构建可观测体系最佳实践
阿里云云原生
作者:蓟北构建面向AI、大数据、容器的可观测体系(一)智算服务可观测概况对于越来越火爆的人工智能领域来说,MLOps是解决这一领域的系统工程,它结合了所有与机器学习相关的任务和流程,从数据管理、建模、持续部署的到运行时计算和资源管理。下图是开源ML-Ops平台MLReef在2021年发布的ML市场相关工具和平台玩家。时至今日,相关工具与平台玩家数量保持着持续高速增长。当前,随着大语言模型(LLM)
- python 中和机器学习相关的库:numpy scipy pandas scikit-learn tensorflow-gpu matplotlib
Hi-Lu
pythonpython机器学习数据分析人工智能数据结构
numpy:python科学计算的基础包,随机数生成、快速高效的多维数组对象ndarray,用于对数组执行元素级计算,直接对数组执行数学运算的函数;用于读写硬盘上基于数组的数据集工具等。scipy:微积分、矩阵分解、函数优化器(最小化器)、根查找算法、信号处理工具、稀疏矩阵和稀疏线性系统求解器。pandas:非常重要的库,提供了快速便捷处理结构化数据的大量数据结构和函数;用得最多的pandas对象
- 机器学习——泰坦尼克号乘客生存预测
是dream
数据库前端linux
前言本文章是我在完成机器学习课程设计写的总结,共计花费五天左右,在kaggle平台上测试,最高的一次准确率为0.78708。在使用机器学习相关知识去处理某个实际的问题的时候首先就是从需求理解和问题预处理开始,通过异常数据收集、数据整合、数据分析探索,到模型训练和调优,最后进行模型验证评估。需求理解和问题预处理是整个流程的基础,在本次课程设计中,目标是判断乘客的生还率,怎样基于已有的特征来预测是否生
- VSCode问题记录
V丶Chao
工作历程vscodepython
20230304-0.引言这几年的编程方式还真是各种变化,从一开始直接VIM,到后面使用jupyter进行机器学习相关,然后再过渡到vim的形式并加以tmux批量化,最后去年使用了vscode作为IDE。随着工具的变化,那么很多习惯也都随之变化。在学校实验室,平时都是直接在服务器上进行编程,比较简单朴素,直接ssh+vim来干。那时候也尝试过sublime加插件来管理远程文件,但是他毕竟还是一个编
- 2018年机器学习数学基础及算法视频教程 20课 适合基础学习 高清课件代码答疑全
花心五花肉
课程介绍:不管是算法工程师还是机器学习相关岗位,很多企业招人时都会选择数学专业的毕业生,更有甚至数学的优先级超过计算机专业,尤其人工智能方面,Al人才门槛高的让人望而却步,其中一个重要的原因就是对数学基础的要求太高,从而限制了很大一批人的进入。课程优势:相关实用数学基础原理,课程设计循序渐进,妙趣横生,使用多个源于生活的场景深入浅出的讲解,动画效果和有趣小游戏案例贯穿全课程,带领你在不经意间轻轻松
- 通俗易懂解释python和anaconda和pytorch以及pycharm之间的关系
qq_45091396
pythonpytorchpycharm
Python:Python就像是一门编程语言的工具箱,你可以把它看作是一种通用的编程语言,就像是一把多功能的工具刀。你可以使用Python来编写各种类型的程序,就像使用工具刀来制作各种不同的手工艺品一样。Anaconda:Anaconda就像是一个装有不同种类工具的大工具箱。这个工具箱里包括了Python语言,但还有其他许多数据科学和机器学习相关的工具和库,比如NumPy、Pandas、Matpl
- 什么是机器学习
码农zz
机器学习人工智能
概述AIMLDL之间的关系AI最大的概念ML机器学习是AI的一个研究方向,一般指的就是软件编程DL深度学习,是机器学习的一个子领域,使用人工神经网络来解决问题MLDL的区别提到机器学习一般就是指传统的基于统计学的一些算法(或者没用神经网络)DL深度学习就是指使用了神经网络为什么要学机器学习从学习知识的角度,从简单到复杂还有一些领域在使用机器学习相关术语介绍机器学习模型=数据+算法数据:用于训练模型
- 学习Python必备的11本神书,你读过几本?速来下载PDF
可口可乐没有乐
学习路线python人工智能开发语言python爬虫
前不久,和几位AI/python和数据分析领域的大神请教入行的初学者应该准备哪几本书?他们强烈推荐这11本神书01机器学习的数学宾大个人推荐指数:★★★★此书来自宾夕法尼亚大学计算机与信息科学系,涵盖代数,拓扑,微积分和优化理论,提供免费PDF下载(链接见文末)。打开细看,一股丰盛的数学大餐的气息迎面扑来:内置9大章节,1962页全面丰富的计算机科学和机器学习相关数学知识,有教学,还有习题。02深
- 手写python实现梯度下降算法(base问题:多元线性回归)
小野堂
python算法线性回归
手写python实现梯度下降算法因为课程设计的原因,接触了很多和机器学习相关的事情在学习的时候发现,机器学习如果只是听不写代码基本什么都学习不到于是自己利用python手写了大部分的常见的基础的算法很有趣呢~慢慢更新咯文章目录手写python实现梯度下降算法简介实现代码写在最后简介①梯度下降算法是在机器学习中常见的一种优化寻找最优模型的方法②是一种参数优化的方式,优化的时候让参数减去一定比例的梯度
- 波士顿房价预测(一)
星夜夏空99
python机器学习
波士顿房价预测(一)导语:开始学习机器学习相关知识。波士顿房价预测,也是很经典的一个案例,我会陆续把自己完成整个项目的过程记录下来,还有就是可能会出现一定的差错,或者数据分析库使用的不是很熟练的情况,也希望大佬指出。另外,我是会一步步完善这个程序,但是只是从流程上完善,最后的结果因为数据集的原因可能不是会很准确。这篇文章更多是记录自己的学习情况,可能可借鉴度不高,如果是纯小白的话可以看一看,说不定
- 数据维度爆炸怎么办?详解5大常用的特征选择方法
wuxiaosi808
数据挖掘机器学习数据挖掘机器学习
数据维度爆炸怎么办?详解5大常用的特征选择方法Datawhale干货作者:EdwinJarvis,cnblog博客整理在许多机器学习相关的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一个子模块,一般不会单独拿出来讨论。但特征选择是一个重要的数据预处理过程,特征选择主要有两个功能:减少特征数量、降维,使模型泛化能力更强,减少过拟合增强对特征和特征值之间的理解好的特征
- 数据维度爆炸?5大常用的特征选择方法详解(上)
Sim1480
python机器学习人工智能数据分析深度学习
EdwinJarvis|作者cnblog博客|来源在许多机器学习相关的书里,很难找到关于特征选择的内容,因为特征选择要解决的问题往往被视为机器学习的一个子模块,一般不会单独拿出来讨论。但特征选择是一个重要的数据预处理过程,特征选择主要有两个功能:减少特征数量、降维,使模型泛化能力更强,减少过拟合增强对特征和特征值之间的理解好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进
- 为什么python会成为人工智能开发首选编程语言?
千_锋小小千
Python借助AI和数据科学,目前已经攀爬到了编程语言生态链的顶级位置,可以说,Python基本上与AI已经紧密捆绑在了一起了。为什么人工智能开发要使用到python语言?我认为基于以下几个原因:简洁高效Python作为一门编程语言,对于程序员来说,想要从事AI和机器学习相关的工作,最好的语言莫过于Python。简洁优美、开发效率高,Python语言已经得到了越来越多公司的青睐,很多公司都开始选
- hello word
xiiatuuo
第一篇当然是用helloword开始~这个博客主要用来记录我的一些推荐系统和机器学习相关的资料的整理和总结,希望能坚持。
- 数据分析大作业:使用Python机器学习相关算法对某地区房地产数据分析预测报告 完整代码+报告
计算机毕设论文
python数据分析房地产分析预测
定义挖掘目标:**1、**房价和哪些因素有关,在之后的中介推销中重点关注**2、**开发商该如何建造房屋才能让更多的客户来选择购买居住**3、**预估房屋价值,给房产中介提供合理的房价信息完整数据加代码:https://download.csdn.net/download/qq_38735017/87418814数据初步处理:%%matplotlibinlineimportpandasaspdim
- 算法……到底是干啥的?(摘自牛客网)
芒果香菠菠
算法
摘录自牛客评论区。链接:算法……到底是干啥的?_牛客网1.门槛学历双9平常就是看论文技术分享接项目给方案跑模型部署到终端清洗数据打比赛写论文写专利面试一般问对应岗位方向前沿的算法paper2.面试问项目问论文,问深度学习和机器学习相关八股,比如transfomer、Bert、gpt、过拟合欠拟合、数据不平衡、梯度消失梯度爆炸、损失函数激活函数啥的,可能再根据项目(比如我的)问点并行、混合精度之类,
- AIGC: 关于ChatGPT中进行情感分析的功能
Wang's Blog
AIGCPythonAIGC
概念GPT是基于大模型去进行的机器学习的训练,对于机器学习相关的概念它是比较了解的比如:文本的分类,文本的情感分析等等相关的机器学习的功能,GPT如何支持?是否有相关接口供我们调用?有的,文档地址:https://platform.openai.com/docs/api-reference/embeddings/create基于这个接口,可以去进行分类,进行情感分析关于这个embeddings接口
- 使用Virtualenv安装机器学习环境
yaoleiroyal
本文档描述在ubuntu14.04环境中通过virtualenv来安装机器学习相关环境,安装的组件有jupyter,matplotlib,numpy,pandas,scipy,scikit-learn。我实际安装时,都是使用python3的环境,也就是使用pip3来安装相关组件!发出下列其中一条命令来安装pip和Virtualenv:$sudoapt-getinstallpython-pippyt
- 机器学习相关知识点总结
月光_a126
线性代数PCA和SVD:https://zhuanlan.zhihu.com/p/58064462正定、半正定https://zhuanlan.zhihu.com/p/93392382投影矩阵:https://blog.csdn.net/weixin_44969779/article/details/90139312旋转矩阵:https://www.bilibili.com/video/BV1sR
- 【人工智能Ⅰ】实验4:贝叶斯分类
MorleyOlsen
人工智能人工智能分类数据挖掘贝叶斯
实验4贝叶斯分类一、实验目的1.了解并学习机器学习相关库的使用。2.熟悉贝叶斯分类原理和方法,并对MNIST数据集进行分类。二、实验内容1.使用贝叶斯方法对mnist或mnistvariation数据集进行分类,并计算准确率。数据集从网上下载(如百度飞桨平台)。2.改变算法参数,观察对识别准确率的影响。三、实验环境平台JupyterNotebook(anaconda3)Python版本python
- 机器学习基础Matplotlib绘图
softshow1026
机器学习matplotlib人工智能
一、运行环境学习工具:jupyter-notebookpython版本:311系统:Win11二、什么是matplotlib?matplotlib是基于python生态开发的一个可视化绘图库,它的出现让python在数据分析及机器学习方面占了重要的一部分,目前很多数据分析及机器学习相关方面的工程都有使用到这个库,并且由于其简单易用,安装简单等方面的优势深得广大开发者的喜爱。三、安装及导入1.安装p
- 机器学习相关概念的直观理解
秃头的少女
机器学习深度学习cnn
目录深度学习:网络结构CNN结构包含:卷积运算池化运算激活函数损失函数深度学习:基于卷积神经网络CNN监督学习:已知规律,求出已知结果非无监督学习:未知规律,求规律结果语义分割:对图像进行对象区别注意力机制:找到特定对象网络结构CNN中的通道channels:代表特征,例如:一般的RGB图片,channels的数量是3(红、绿、蓝)上采样:放大图像下采样:缩小图像CNN结构包含:卷积运算本质为矩阵
- 01-概述 - OpenCV介绍与环境搭建
Ivy_belief
OpenCVopencv人工智能计算机视觉
目录1、OpenCV概念(1)OpenCV的介绍(2)图像处理(ImageProcessing)(3)OpenCV的架构和核心模块2、开发环境搭建3、代码与演示1、OpenCV概念(1)OpenCV的介绍OpenCV是计算机视觉开源库,主要算法涉及图像处理和机器学习相关方法;OpenCV的全称是OpenSourceComputerVisionLibrary,直译就是“开源计算机视觉库”。取代表开源
- 基于STM32的色彩识别与分类算法优化
嵌入式杂谈
stm32分类嵌入式硬件
基于STM32的色彩识别与分类算法优化是一项与图像处理和机器学习相关的研究任务,旨在实现高效的色彩识别和分类算法在STM32微控制器上的运行。本文将介绍基于STM32的色彩识别与分类算法优化的原理和实现步骤,并提供相应的代码示例。1.色彩识别与分类概述色彩识别与分类是一种通过分析图像中的颜色信息来进行目标检测、品质控制等应用。在嵌入式系统中,如STM32微控制器,需要优化色彩识别与分类算法以满足性
- python最小生成树算法_最小生成树:Kruskal算法及python实现
芒果大大
python最小生成树算法
本人数学专业本科,研究生读的计算机,方向是深度学习相关的,在平时上课和自己自学,看论文都是深度学习和机器学习相关的。打算毕业之后从事机器学习相关工作,但是不知道学完Dl,ML的相关算法之后,还需不需要学习传统的数据结构,比如二叉树,图,队列,栈什么的,还有必要学习算法导论里的算法吗?如果都学的话,那感觉时间不够,而且这些难度都挺大的。有没有前辈来指点一二呢?这是今天逛知乎时看到的一个提问“学习机器
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出