- Keras深度学习框架入门及实战指南
司莹嫣Maude
Keras深度学习框架入门及实战指南keraskeras-team/keras:是一个基于Python的深度学习库,它没有使用数据库。适合用于深度学习任务的开发和实现,特别是对于需要使用Python深度学习库的场景。特点是深度学习库、Python、无数据库。项目地址:https://gitcode.com/gh_mirrors/ke/keras一、项目介绍Keras简介Keras是一款高级神经网络
- Python深度学习-环境
cunzai1985
tensorflowpython深度学习人工智能anaconda
Python深度学习-环境(PythonDeepLearning-Environment)Inthischapter,wewilllearnabouttheenvironmentsetupforPythonDeepLearning.Wehavetoinstallthefollowingsoftwareformakingdeeplearningalgorithms.在本章中,我们将学习为Python
- Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
呆萌的小透明
深度学习神经网络深度学习
第8章生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是
- Python深度学习:构建下一代智能系统
2401_83402415
pythonpython深度学习开发语言Transformer模型目标检测算法Attention
近年来,伴随着以卷积神经网络(CNN)为代表的深度学习的快速发展,人工智能迈入了第三次发展浪潮,AI技术在各个领域中的应用越来越广泛。为了帮助广大学员更加深入地学习人工智能领域最近3-5年的新理论与新技术,本文讲解注意力机制、Transformer模型(BERT、GPT-1/2/3/3.5/4、DETR、ViT、SwinTransformer等)、生成式模型(变分自编码器VAE、生成式对抗网络GA
- python深度学习框架——TensorFlow
零 度°
pythonpythontensorflow
TensorFlow,由Google开发的开源机器学习库,以其强大的功能和灵活性,在深度学习、计算机视觉和自然语言处理等领域发挥着重要作用。本文将深入探讨TensorFlow中的一些常用函数及其参数。TensorFlow核心概念在TensorFlow中,**张量(Tensor)**是基本的数据单元,可以视为多维数组。**计算图(ComputationGraph)是由节点(代表数学运算)和边(代表张
- 校园打架行为识别检测系统 YOLOv5
燧机科技SuiJi
YOLO人工智能python计算机视觉开发语言
校园打架行为识别检测系统基于python深度学习框架+边缘分析技术,校园打架行为识别检测系统自动对校园监控视频图像信息进行分析识别。校园打架行为识别检测系统利用学校监控对校园、广场等区域进行实时监测,当监测到有人打架斗殴时,系统立即抓拍存档语音提醒,并将打架行为回传给学校监控后台,提醒后台人员及时处理打架情况。在YOLO系列算法中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型
- [Python人工智能] 四十二.命名实体识别 (3)基于Bert+BiLSTM-CRF的中文实体识别万字详解(异常解决中)
Eastmount
人工智能pythonbert实体识别bert4keras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现中文命名实体识别研究,构建BiGRU-CRF模型实现。这篇文章将继续以中文语料为主,介绍融合Bert的实体识别研究,使用bert4keras和kears包来构建Bert+BiLSTM-CRF模型。然而,该代码最终结果有些问题,目前还在解决中,但现阶段方法先作为在线笔记分享出来。基础性文章,希望对您有帮助,如
- [Python人工智能] 四十一.命名实体识别 (2)基于BiGRU-CRF的中文实体识别万字详解
Eastmount
python人工智能实体识别BiGRU-CRFKeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前文讲解如何实现威胁情报实体识别,利用BiLSTM-CRF算法实现对ATT&CK相关的技战术实体进行提取,是安全知识图谱构建的重要支撑。这篇文章将以中文语料为主,介绍中文命名实体识别研究,并构建BiGRU-CRF模型实现。基础性文章,希望对您有帮助,如果存在错误或不足之处,还请海涵。且看且珍惜!由于上一篇文章详细讲解ATT
- 如何使用Hugging Face:对Transformer和pipelines的介绍
第欧根尼的酒桶
transformer深度学习人工智能
一、transformer介绍众所周知,transformer模型(如GPT-3、LLaMa和ChatGPT)已经彻底改变了人工智能领域。它们不仅被用于自然语言处理,还被应用于计算机视觉、语音处理和其他任务中。HuggingFace是一个以变换器为核心的Python深度学习库。因此,在我们深入了解其工作原理之前,我们将探讨什么是transformer,以及为什么它们能够支持如此强大的模型。1.递归
- 基于python深度学习的中文情感分析的系统,附源码
计算机徐师兄
Python项目python深度学习开发语言情感分析系统中文情感分析
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12W+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
- python常用的深度学习框架
攻城狮的梦
python开发python开发语言
目录一:介绍二:使用Python中有几个非常受欢迎的深度学习框架,它们提供了构建和训练神经网络所需的各种工具和库。以下是一些最常用的Python深度学习框架:一:介绍TensorFlow:由Google开发的TensorFlow是最受欢迎的深度学习框架之一。它支持分布式训练,能够在不同硬件上高效运行,包括CPU、GPU和TPU。TensorFlow还提供了一个高级API,称为Keras,它使构建和
- 第7章 python深度学习——波斯美女
weixin_42963026
python深度学习美女
第7章高级的深度学习最佳实践本章包括以下内容:Keras函数式API使用Keras回调函数使用TensorBoard可视化工具开发最先进模型的重要最佳实践本章将介绍几种强大的工具,可以让你朝着针对困难问题来开发最先进模型这一目标更近一步。利用Keras函数式API,你可以构建类图(graph-like)模型、在不同的输入之间共享某一层,并且还可以像使用Python函数一样使用Keras模型。Ker
- 第8章 python深度学习——波斯美女
weixin_42963026
深度学习美女人工智能
第8章生成式深度学习本章包括以下内容:使用LSTM生成文本实现DeepDream实现神经风格迁移变分自编码器了解生成式对抗网络人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。2015年夏天,我们见识了Google的DeepDream算法,它能够将一张图像转化为狗眼睛和错觉式伪影(pareidolicartifact)混合
- 第4章 python深度学习——(波斯美女)
weixin_42963026
python深度学习美女
第4章机器学习基础本章包括以下内容:除分类和回归之外的机器学习形式评估机器学习模型的规范流程为深度学习准备数据特征工程解决过拟合处理机器学习问题的通用工作流程学完第3章的三个实例,你应该已经知道如何用神经网络解决分类问题和回归问题,而且也看到了机器学习的核心难题:过拟合。本章会将你对这些问题的直觉固化为解决深度学习问题的可靠的概念框架。我们将把所有这些概念——模型评估、数据预处理、特征工程、解决过
- 第5章 (python深度学习——波斯美女)
weixin_42963026
深度学习计算机视觉python
第5章深度学习用于计算机视觉本章包括以下内容:理解卷积神经网络(convnet)使用数据增强来降低过拟合使用预训练的卷积神经网络进行特征提取微调预训练的卷积神经网络将卷积神经网络学到的内容及其如何做出分类决策可视化本章将介绍卷积神经网络,也叫convnet,它是计算机视觉应用几乎都在使用的一种深度学习模型。你将学到将卷积神经网络应用于图像分类问题,特别是那些训练数据集较小的问题。如果你工作的地方并
- 第3章-python深度学习——(波斯美女)
weixin_42963026
python深度学习美女
第3章神经网络入门本章包括以下内容:神经网络的核心组件Keras简介建立深度学习工作站使用神经网络解决基本的分类问题与回归问题本章的目的是让你开始用神经网络来解决实际问题。你将进一步巩固在第2章第一个示例中学到的知识,还会将学到的知识应用于三个新问题,这三个问题涵盖神经网络最常见的三种使用场景:二分类问题、多分类问题和标量回归问题。本章将进一步介绍神经网络的核心组件,即层、网络、目标函数和优化器;
- 第2章-神经网络的数学基础——python深度学习
weixin_42963026
深度学习python深度学习
第2章神经网络的数学基础2.1初识神经网络我们来看一个具体的神经网络示例,使用Python的Keras库来学习手写数字分类。我们这里要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(0~9)。我们将使用MNIST数据集,它是机器学习领域的一个经典数据集,其历史几乎和这个领域一样长,而且已被人们深入研究。MNIST数据集包含60000张训练图像和10000张测试图像,由美
- 竞赛保研 电影评论情感分析 - python 深度学习 情感分类
iuerfee
分类python
1前言学长分享优质竞赛项目,今天要分享的是GRU的电影评论情感分析-python深度学习情感分类学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分这是一个较为新颖的竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1项目介绍其实,很明显这个项目和微博谣言检测是一样的,也是个二分类
- 基于python深度学习对遥感图像识别
资深码里奥
深度学习python深度学习开发语言
数据集介绍,下载本资源后,界面如下:有两个文件夹一个是存放数据集的文件。数据集介绍:一共含有:4个类别,数据集图片数量超过:4500张,包含:'cloudy','desert','green_area','water'等。然后本地的train.txt和val.txt里面存放的是数据集的图片路径和对应的标签。运行train.py文件就会将train.txt和val.txt里面的数据进行读取然后训练,
- 深入浅出Pytorch(一)
qq_42194332
pytorchpython深度学习
Task01:Pytorch认知和安装python实现的深度学习的科学计算包,提供了一套深度学习框架。发展好,框架简洁,项目开源,上手快。pytorch的安装选择常见的Anaconda+Pytorch+Pycharm配套工具需要区分的是:Anaconda是开源的python版本,包含conda、Python等许多科学包。Pytorch是开源的Python深度学习库。Pycharm是python的一
- 深度学习 pytorch的使用(张量1)
在路上哟~
深度学习#pytorchpytorch人工智能python深度学习
一、张量的创建PyTorch是一个Python深度学习框架,它将数据封装成张量(Tensor)来进行运算。PyTorch中的张量就是元素为同一种数据类型的多维矩阵。在PyTorch中,张量以"类"的形式封装起来,对张量的一些运算、处理的方法被封装在类中。一、创建张量的方式1、torch.tensor根据指定数量创建张量2、torch.Tensor根据形状创建张量,也可以用来创建指定数据的张量3、t
- python深度学习—第6章(波斯美女)
weixin_42963026
python深度学习美女
第6章深度学习用于文本和序列6.1处理文本数据与其他所有神经网络一样,深度学习模型不会接收原始文本作为输入,它只能处理数值张量。文本向量化(vectorize)是指将文本转换为数值张量的过程。它有多种实现方法。将文本分割为单词,并将每个单词转换为一个向量。将文本分割为字符,并将每个字符转换为一个向量。提取单词或字符的n-gram,并将每个n-gram转换为一个向量。n-gram是多个连续单词或字符
- Python深度学习
亮亮你看起风了
百度网盘地址:https://pan.baidu.com/s/1RPYPAklmwwQd128ocgElYw解压码:h8vb封面图片
- 资深程序员骆昊:Python从新手到大师,100天完整学习路线
算法channel
Python-100天从新手到大师摘要:最近后台有些小伙伴在问我Python入门的问题,我推荐这个学习路线资料,可能你们有些已经在使用它,的确它是我见过最全的、最富有逻辑体系的Python技术栈总结,含有Python基础语法、前端、后端、Python做数据分析、数据挖掘,Python机器学习,Python深度学习等。真正做到“一文在手,打遍天下无敌手”!文章出处:https://github.co
- python深度学习搭环境技巧
yang_daxia
python深度学习开发语言
1、使用-t做不同项目的环境隔离pipintallxxx-t/path/env1公共环境放一个路径,其他放单独路径,可以完美隔离训练时通过exportPYTHONPATH=/path/env1:$PYTHONPATH来调整2、安装包,因为依赖导致失败加上参数–no-deps,不按照依赖有时候不需要安装依赖,使用已经安装的即可,之后再针对性的补缺少的依赖3、目前环境下无安装,使用别的机器,安装好以后
- pytorch-gpu版本安装
EelBarb
pytorch人工智能python
前言PyTorch是一款广泛使用的python深度学习框架,它能够帮助研究者们快速构建和训练复杂的神经网络,在人工智能领域无疑是【宠儿】的存在。但刚进门的小白们应该都有困惑:为什么有些基于pytorch框架吃CPU,油得却是吃GPU,这里呢,主要是因为pytorch拥有CPU和GPU两个版本,其中毋庸置疑的是如果使用GPU的话,速度往往超于CPU版本。这里呢,我将就【pytorch-gpu版本安装
- python 深度学习 记录遇到的报错问题11
水w
#深度学习python深度学习开发语言人工智能
本篇继python深度学习记录遇到的报错问题10-CSDN博客六、ValueError:cannotconvertfloatNaNtointeger报错:原因:这个错误通常是因为在尝试将NaN值转换为整数时发生的。NaN表示“非数字”,它无法转换为整数。在Python中,NaN表示NotaNumber,表示数据集中缺失的条目。它是一种特殊的float值,不能转换为float以外的其他类型。解决方法
- 大数据毕设分享 opencv python 深度学习垃圾图像分类系统
caxiou
毕业设计python毕设
文章目录0前言课题简介一、识别效果二、实现1.数据集2.实现原理和方法3.网络结构最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要分享的是opencvpython深度学习垃圾分类系统学长这里给一个题
- python 深度学习 记录遇到的报错问题10
水w
#深度学习linux深度学习运维python人工智能
本篇继python深度学习解决遇到的报错问题9_module'd2l.torch'hasnoattribute'train_ch3-CSDN博客一、CUDAerror:nokernelimageisavailableforexecutiononthedeviceCUDAkernelerrorsmightbeasynchronouslyreportedatsomeotherAPIcall,sothe
- 神经网络——神经网络入门
前丨尘忆·梦
keras深度学习神经网络
神经网络入门本章的目的是让你开始用神经网络来解决实际问题。你将进一步巩固在前边第一个示例中学到的知识,还会将学到的知识应用于三个新问题,这三个问题涵盖神经网络最常见的三种使用场景:二分类问题、多分类问题和标量回归问题。本章将进一步介绍神经网络的核心组件,即层、网络、目标函数和优化器;还会简要介绍Keras,它是贯穿本书的Python深度学习库。你还将建立深度学习工作站,安装好TensorFlow和
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟