注:问号以及未注释部分 会在x265-1.8版本内更新
/*****************************************************************************
* Copyright (C) 2013 x265 project
*
* Authors: Steve Borho
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111, USA.
*
* This program is also available under a commercial proprietary license.
* For more information, contact us at license @ x265.com.
*****************************************************************************/
#include "common.h"
#include "primitives.h"
#include "threadpool.h"
#include "param.h"
#include "frame.h"
#include "framedata.h"
#include "picyuv.h"
#include "bitcost.h"
#include "encoder.h"
#include "slicetype.h"
#include "frameencoder.h"
#include "ratecontrol.h"
#include "dpb.h"
#include "nal.h"
#include "x265.h"
namespace x265 {
const char g_sliceTypeToChar[] = {'B', 'P', 'I'};
}
static const char* summaryCSVHeader =
"Command, Date/Time, Elapsed Time, FPS, Bitrate, "
"Y PSNR, U PSNR, V PSNR, Global PSNR, SSIM, SSIM (dB), "
"I count, I ave-QP, I kpbs, I-PSNR Y, I-PSNR U, I-PSNR V, I-SSIM (dB), "
"P count, P ave-QP, P kpbs, P-PSNR Y, P-PSNR U, P-PSNR V, P-SSIM (dB), "
"B count, B ave-QP, B kpbs, B-PSNR Y, B-PSNR U, B-PSNR V, B-SSIM (dB), "
"Version\n";
static const char* defaultAnalysisFileName = "x265_analysis.dat";
using namespace x265;
Encoder::Encoder()
{
m_aborted = false;
m_reconfigured = false;
m_encodedFrameNum = 0;
m_pocLast = -1;
m_curEncoder = 0;
m_numLumaWPFrames = 0;
m_numChromaWPFrames = 0;
m_numLumaWPBiFrames = 0;
m_numChromaWPBiFrames = 0;
m_lookahead = NULL;
m_rateControl = NULL;
m_dpb = NULL;
m_exportedPic = NULL;
m_numDelayedPic = 0;
m_outputCount = 0;
m_csvfpt = NULL;
m_param = NULL;
m_latestParam = NULL;
m_cuOffsetY = NULL;
m_cuOffsetC = NULL;
m_buOffsetY = NULL;
m_buOffsetC = NULL;
m_threadPool = NULL;
m_analysisFile = NULL;
for (int i = 0; i < X265_MAX_FRAME_THREADS; i++)
m_frameEncoder[i] = NULL;
MotionEstimate::initScales();
}
void Encoder::create()
{
if (!primitives.pu[0].sad)
{
// this should be an impossible condition when using our public API, and indicates a serious bug.
x265_log(m_param, X265_LOG_ERROR, "Primitives must be initialized before encoder is created\n");
abort();
}
x265_param* p = m_param;
int rows = (p->sourceHeight + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize];
int cols = (p->sourceWidth + p->maxCUSize - 1) >> g_log2Size[p->maxCUSize];
// Do not allow WPP if only one row or fewer than 3 columns, it is pointless and unstable
if (rows == 1 || cols < 3)
p->bEnableWavefront = 0;
bool allowPools = !p->numaPools || strcmp(p->numaPools, "none");
// Trim the thread pool if --wpp, --pme, and --pmode are disabled
if (!p->bEnableWavefront && !p->bDistributeModeAnalysis && !p->bDistributeMotionEstimation && !p->lookaheadSlices)
allowPools = false;
if (!p->frameNumThreads)
{
// auto-detect frame threads
int cpuCount = ThreadPool::getCpuCount();
if (!p->bEnableWavefront)
p->frameNumThreads = X265_MIN3(cpuCount, (rows + 1) / 2, X265_MAX_FRAME_THREADS);
else if (cpuCount >= 32)
p->frameNumThreads = (p->sourceHeight > 2000) ? 8 : 6; // dual-socket 10-core IvyBridge or higher
else if (cpuCount >= 16)
p->frameNumThreads = 5; // 8 HT cores, or dual socket
else if (cpuCount >= 8)
p->frameNumThreads = 3; // 4 HT cores
else if (cpuCount >= 4)
p->frameNumThreads = 2; // Dual or Quad core
else
p->frameNumThreads = 1;
}
m_numPools = 0;
if (allowPools)
m_threadPool = ThreadPool::allocThreadPools(p, m_numPools);
if (!m_numPools)
{
// issue warnings if any of these features were requested
if (p->bEnableWavefront)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --wpp disabled\n");
if (p->bDistributeMotionEstimation)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pme disabled\n");
if (p->bDistributeModeAnalysis)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --pmode disabled\n");
if (p->lookaheadSlices)
x265_log(p, X265_LOG_WARNING, "No thread pool allocated, --lookahead-slices disabled\n");
// disable all pool features if the thread pool is disabled or unusable.
p->bEnableWavefront = p->bDistributeModeAnalysis = p->bDistributeMotionEstimation = p->lookaheadSlices = 0;
}
char buf[128];
int len = 0;
if (p->bEnableWavefront)
len += sprintf(buf + len, "wpp(%d rows)", rows);
if (p->bDistributeModeAnalysis)
len += sprintf(buf + len, "%spmode", len ? "+" : "");
if (p->bDistributeMotionEstimation)
len += sprintf(buf + len, "%spme ", len ? "+" : "");
if (!len)
strcpy(buf, "none");
x265_log(p, X265_LOG_INFO, "frame threads / pool features : %d / %s\n", p->frameNumThreads, buf);
for (int i = 0; i < m_param->frameNumThreads; i++)
{
m_frameEncoder[i] = new FrameEncoder;
m_frameEncoder[i]->m_nalList.m_annexB = !!m_param->bAnnexB;
}
if (m_numPools)
{
for (int i = 0; i < m_param->frameNumThreads; i++)
{
int pool = i % m_numPools;
m_frameEncoder[i]->m_pool = &m_threadPool[pool];
m_frameEncoder[i]->m_jpId = m_threadPool[pool].m_numProviders++;
m_threadPool[pool].m_jpTable[m_frameEncoder[i]->m_jpId] = m_frameEncoder[i];
}
for (int i = 0; i < m_numPools; i++)
m_threadPool[i].start();
}
else
{
/* CU stats and noise-reduction buffers are indexed by jpId, so it cannot be left as -1 */
for (int i = 0; i < m_param->frameNumThreads; i++)
m_frameEncoder[i]->m_jpId = 0;
}
if (!m_scalingList.init()) // 初始化量化中所需要的几个表格
{
x265_log(m_param, X265_LOG_ERROR, "Unable to allocate scaling list arrays\n");
m_aborted = true;
}
else if (!m_param->scalingLists || !strcmp(m_param->scalingLists, "off")) // 如果scalingLists为0或者是off,则不使用量化矩阵表,只进行均匀量化
m_scalingList.m_bEnabled = false;
else if (!strcmp(m_param->scalingLists, "default")) // 如果scalingLists为default,则使用HEVC中默认的量化矩阵进行量化
m_scalingList.setDefaultScalingList();
else if (m_scalingList.parseScalingList(m_param->scalingLists)) // 否则从指定的文件中读取量化矩阵
m_aborted = true;
m_scalingList.setupQuantMatrices(); // 根据上面的配制和选项,设置量化矩阵表
m_lookahead = new Lookahead(m_param, m_threadPool);//初始化lookachead用于帧类型决策
if (m_numPools)
{
m_lookahead->m_jpId = m_threadPool[0].m_numProviders++;
m_threadPool[0].m_jpTable[m_lookahead->m_jpId] = m_lookahead;
}
m_dpb = new DPB(m_param);
m_rateControl = new RateControl(*m_param);
initVPS(&m_vps);
initSPS(&m_sps);
initPPS(&m_pps);
/* Try to open CSV file handle */
if (m_param->csvfn)
{
m_csvfpt = fopen(m_param->csvfn, "r");
if (m_csvfpt)
{
/* file already exists, re-open for append */
fclose(m_csvfpt);
m_csvfpt = fopen(m_param->csvfn, "ab");
}
else
{
/* new CSV file, write header */
m_csvfpt = fopen(m_param->csvfn, "wb");
if (m_csvfpt)
{
if (m_param->logLevel >= X265_LOG_FRAME)
{
fprintf(m_csvfpt, "Encode Order, Type, POC, QP, Bits, ");
if (m_param->rc.rateControlMode == X265_RC_CRF)
fprintf(m_csvfpt, "RateFactor, ");
fprintf(m_csvfpt, "Y PSNR, U PSNR, V PSNR, YUV PSNR, SSIM, SSIM (dB), List 0, List 1");
/* detailed performance statistics */
fprintf(m_csvfpt, ", DecideWait (ms), Row0Wait (ms), Wall time (ms), Ref Wait Wall (ms), Total CTU time (ms), Stall Time (ms), Avg WPP, Row Blocks\n");
}
else
fputs(summaryCSVHeader, m_csvfpt);
}
}
if (!m_csvfpt)
{
x265_log(m_param, X265_LOG_ERROR, "Unable to open CSV log file <%s>, aborting\n", m_param->csvfn);
m_aborted = true;
}
}
int numRows = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize;
int numCols = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize;
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (!m_frameEncoder[i]->init(this, numRows, numCols))
{
x265_log(m_param, X265_LOG_ERROR, "Unable to initialize frame encoder, aborting\n");
m_aborted = true;
}
}
for (int i = 0; i < m_param->frameNumThreads; i++)
{
m_frameEncoder[i]->start();//
m_frameEncoder[i]->m_done.wait(); //完成设置为等待/* wait for thread to initialize */
}
if (m_param->bEmitHRDSEI)
m_rateControl->initHRD(m_sps);
if (!m_rateControl->init(m_sps))
m_aborted = true;
if (!m_lookahead->create())//申请lookachead空间用于帧类型决策
m_aborted = true;
if (m_param->analysisMode)
{
const char* name = m_param->analysisFileName;
if (!name)
name = defaultAnalysisFileName;
const char* mode = m_param->analysisMode == X265_ANALYSIS_LOAD ? "rb" : "wb";
m_analysisFile = fopen(name, mode);
if (!m_analysisFile)
{
x265_log(NULL, X265_LOG_ERROR, "Analysis load/save: failed to open file %s\n", name);
m_aborted = true;
}
}
m_bZeroLatency = !m_param->bframes && !m_param->lookaheadDepth && m_param->frameNumThreads == 1;//判断是否是零延迟,没有B帧,没有lookachead 不启用帧级并行编码
m_aborted |= parseLambdaFile(m_param);
m_encodeStartTime = x265_mdate();
m_nalList.m_annexB = !!m_param->bAnnexB;
}
void Encoder::stopJobs()
{
if (m_rateControl)
m_rateControl->terminate(); // unblock all blocked RC calls
if (m_lookahead)
m_lookahead->stopJobs(); //停止帧类型决策任务,等它完毕再停止
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (m_frameEncoder[i])
{
m_frameEncoder[i]->getEncodedPicture(m_nalList);
m_frameEncoder[i]->m_threadActive = false;
m_frameEncoder[i]->m_enable.trigger();
m_frameEncoder[i]->stop();
}
}
if (m_threadPool)
m_threadPool->stopWorkers();
}
void Encoder::destroy()
{
if (m_exportedPic)
{
ATOMIC_DEC(&m_exportedPic->m_countRefEncoders);
m_exportedPic = NULL;
}
for (int i = 0; i < m_param->frameNumThreads; i++)
{
if (m_frameEncoder[i])
{
m_frameEncoder[i]->destroy();
delete m_frameEncoder[i];
}
}
// thread pools can be cleaned up now that all the JobProviders are
// known to be shutdown
delete [] m_threadPool;
if (m_lookahead)
{
m_lookahead->destroy();//释放帧类型决策类内存
delete m_lookahead;
}
delete m_dpb;
if (m_rateControl)
{
m_rateControl->destroy();
delete m_rateControl;
}
X265_FREE(m_cuOffsetY);
X265_FREE(m_cuOffsetC);
X265_FREE(m_buOffsetY);
X265_FREE(m_buOffsetC);
if (m_analysisFile)
fclose(m_analysisFile);
if (m_csvfpt)
fclose(m_csvfpt);
if (m_param)
{
/* release string arguments that were strdup'd */
free((char*)m_param->rc.lambdaFileName);
free((char*)m_param->rc.statFileName);
free((char*)m_param->analysisFileName);
free((char*)m_param->scalingLists);
free((char*)m_param->csvfn);
free((char*)m_param->numaPools);
free((char*)m_param->masteringDisplayColorVolume);
free((char*)m_param->contentLightLevelInfo);
x265_param_free(m_param);
}
x265_param_free(m_latestParam);
}
void Encoder::updateVbvPlan(RateControl* rc)
{
for (int i = 0; i < m_param->frameNumThreads; i++)
{
FrameEncoder *encoder = m_frameEncoder[i];
if (encoder->m_rce.isActive && encoder->m_rce.poc != rc->m_curSlice->m_poc)
{
int64_t bits = (int64_t) X265_MAX(encoder->m_rce.frameSizeEstimated, encoder->m_rce.frameSizePlanned);
rc->m_bufferFill -= bits;
rc->m_bufferFill = X265_MAX(rc->m_bufferFill, 0);
rc->m_bufferFill += encoder->m_rce.bufferRate;
rc->m_bufferFill = X265_MIN(rc->m_bufferFill, rc->m_bufferSize);
if (rc->m_2pass)
rc->m_predictedBits += bits;
}
}
}
/**
* Feed one new input frame into the encoder, get one frame out. If pic_in is
* NULL, a flush condition is implied and pic_in must be NULL for all subsequent
* calls for this encoder instance.
*
* pic_in input original YUV picture or NULL
* pic_out pointer to reconstructed picture struct
*
* returns 0 if no frames are currently available for output
* 1 if frame was output, m_nalList contains access unit
* negative on malloc error or abort */
/** 函数功能 : ?????
/* 调用范围 : ???只在PreLookaheadGroup::processTasks函数中被调用
* \参数 fenc : ???当前帧(经过1/2下采样后的数据)
* 返回值 : 异常退出-1???null
**/
int Encoder::encode(const x265_picture* pic_in, x265_picture* pic_out)
{
#if CHECKED_BUILD || _DEBUG
if (g_checkFailures) //检错处理:正常情况不会进入
{
x265_log(m_param, X265_LOG_ERROR, "encoder aborting because of internal error\n");
return -1; //异常退出
}
#endif
if (m_aborted) //检错处理:正常情况不会进入
return -1; //异常退出
if (m_exportedPic) //???
{
ATOMIC_DEC(&m_exportedPic->m_countRefEncoders);
m_exportedPic = NULL;
m_dpb->recycleUnreferenced();
}
if (pic_in) //如果当前有读入帧 (没有可能已经读完原始帧,但是lookachead buffer里面依然有待编码帧)
{
if (pic_in->colorSpace != m_param->internalCsp) //检错,是否配置成功(取样格式 4:4:4 4:2:0)
{
x265_log(m_param, X265_LOG_ERROR, "Unsupported color space (%d) on input\n",
pic_in->colorSpace);
return -1; //异常退出
}
if (pic_in->bitDepth < 8 || pic_in->bitDepth > 16) //检错像素深度
{
x265_log(m_param, X265_LOG_ERROR, "Input bit depth (%d) must be between 8 and 16\n",
pic_in->bitDepth);
return -1;//异常退出
}
Frame *inFrame; //即将create 用于存储视频帧
if (m_dpb->m_freeList.empty()) //m_freeList为空 一般一开始会一直进入,随后只进入else ???为什么这样,待确定
{
inFrame = new Frame; //申请空间
x265_param* p = m_reconfigured? m_latestParam : m_param; //选择新的配置文件
if (inFrame->create(p)) //申请frame空间
{
/* the first PicYuv created is asked to generate the CU and block unit offset
* arrays which are then shared with all subsequent PicYuv (orig and recon)
* allocated by this top level encoder */
if (m_cuOffsetY) //已经申请过空间,不用再进入else 将encoder offset指针赋值到对应m_fencPic对象中
{
inFrame->m_fencPic->m_cuOffsetC = m_cuOffsetC; //空间为一帧LCU个数,按照行列对应色度LCU的pixel地址
inFrame->m_fencPic->m_cuOffsetY = m_cuOffsetY; //空间为一帧LCU个数,按照行列对应亮度LCU的pixel地址
inFrame->m_fencPic->m_buOffsetC = m_buOffsetC; //空间为一个LCU的part个数(默认256个4x4),为当前色度位置与LCU首地址的偏移地址
inFrame->m_fencPic->m_buOffsetY = m_buOffsetY; //空间为一个LCU的part个数(默认256个4x4),为当前亮度位置与LCU首地址的偏移地址
}
else
{
if (!inFrame->m_fencPic->createOffsets(m_sps))//申请偏移计算空间
{
//报错正常不会进入
m_aborted = true;
x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n");
inFrame->destroy();
delete inFrame;
return -1; //异常退出
}
else
{
//申请内存正常 会进出入此:将encoder offset值置为对应m_fencPic对象中的指针值
m_cuOffsetC = inFrame->m_fencPic->m_cuOffsetC;//空间为一帧LCU个数,按照行列对应色度LCU的pixel地址
m_cuOffsetY = inFrame->m_fencPic->m_cuOffsetY;//空间为一帧LCU个数,按照行列对应亮度LCU的pixel地址
m_buOffsetC = inFrame->m_fencPic->m_buOffsetC;//空间为一个LCU的part个数(默认256个4x4),为当前色度位置与LCU首地址的偏移地址
m_buOffsetY = inFrame->m_fencPic->m_buOffsetY;//空间为一个LCU的part个数(默认256个4x4),为当前亮度位置与LCU首地址的偏移地址
}
}
}
else
{
//报错信息,正常不会进入
m_aborted = true;
x265_log(m_param, X265_LOG_ERROR, "memory allocation failure, aborting encode\n");
inFrame->destroy();
delete inFrame;
return -1; //异常退出
}
} //if (m_dpb->m_freeList.empty())
else
{
inFrame = m_dpb->m_freeList.popBack();//直接从buf中获取空间 ???mdpb用途??
inFrame->m_lowresInit = false; //标示未初始化
}
/* Copy input picture into a Frame and PicYuv, send to lookahead */
inFrame->m_fencPic->copyFromPicture(*pic_in, m_sps.conformanceWindow.rightOffset, m_sps.conformanceWindow.bottomOffset);//获取原始帧数据//其它深度数据copy以及扩边???
inFrame->m_poc = ++m_pocLast;//累加读入帧数
inFrame->m_userData = pic_in->userData;//一般都为0?????
inFrame->m_pts = pic_in->pts;//一般就是对应poc的值(也可以赋值传入的pts号)
inFrame->m_forceqp = pic_in->forceqp;//??????qpfile 一般为0
inFrame->m_param = m_reconfigured ? m_latestParam : m_param;//?????
if (m_pocLast == 0)
m_firstPts = inFrame->m_pts;//第一帧,其值等于最先进入的pts号(一般等于0)
if (m_bframeDelay && m_pocLast == m_bframeDelay)
m_bframeDelayTime = inFrame->m_pts - m_firstPts;//只进入一次,计算延迟的pts号个数
/* Encoder holds a reference count until stats collection is finished */
ATOMIC_INC(&inFrame->m_countRefEncoders);//将当前的被参考次数设置为1 防止后面被释放 此处值为1
if ((m_param->rc.aqMode || m_param->bEnableWeightedPred || m_param->bEnableWeightedBiPred) &&
(m_param->rc.cuTree && m_param->rc.bStatRead))//???
{
if (!m_rateControl->cuTreeReadFor2Pass(inFrame))
{
m_aborted = 1;
return -1;
}
}
/* Use the frame types from the first pass, if available */
int sliceType = (m_param->rc.bStatRead) ? m_rateControl->rateControlSliceType(inFrame->m_poc) : pic_in->sliceType;//1pass中,如果没有经过parseQPFile,则slicetyoe 为X265_TYPE_AUTO
//2pass中,通过1pass结果直接获取帧类型???
/* In analysisSave mode, x265_analysis_data is allocated in pic_in and inFrame points to this */
/* Load analysis data before lookahead->addPicture, since sliceType has been decided */
if (m_param->analysisMode == X265_ANALYSIS_LOAD)//????
{
x265_picture* inputPic = const_cast(pic_in);
/* readAnalysisFile reads analysis data for the frame and allocates memory based on slicetype */
readAnalysisFile(&inputPic->analysisData, inFrame->m_poc);
inFrame->m_analysisData.poc = inFrame->m_poc;
inFrame->m_analysisData.sliceType = inputPic->analysisData.sliceType;
inFrame->m_analysisData.numCUsInFrame = inputPic->analysisData.numCUsInFrame;
inFrame->m_analysisData.numPartitions = inputPic->analysisData.numPartitions;
inFrame->m_analysisData.interData = inputPic->analysisData.interData;
inFrame->m_analysisData.intraData = inputPic->analysisData.intraData;
sliceType = inputPic->analysisData.sliceType;
}
m_lookahead->addPicture(*inFrame, sliceType);//向输入列表中添加原始帧准备帧类型决策,在buffer满时,触发帧类型决策
m_numDelayedPic++;//当前列表中有多少帧未编码 每当读入一帧++,每当编码完毕一帧减--
} //if (pic_in)
else
m_lookahead->flush();//当前已经读取原始帧完毕,往后不用再继续读取,告知lookahead已满
FrameEncoder *curEncoder = m_frameEncoder[m_curEncoder];// 获取当前frameEncoder
m_curEncoder = (m_curEncoder + 1) % m_param->frameNumThreads;// 记录下一个frameEncoder
int ret = 0;//返回是否已经编码过一帧,返回值0或者1
/* Normal operation is to wait for the current frame encoder to complete its current frame
* and then to give it a new frame to work on. In zero-latency mode, we must encode this
* input picture before returning so the order must be reversed. This do/while() loop allows
* us to alternate the order of the calls without ugly code replication */
Frame* outFrame = NULL;//???
Frame* frameEnc = NULL;//???
int pass = 0;//零延迟情况:有两个取值(0,1) 0表示读帧类型决定完毕的帧准备编码 1表示编码完毕写数据 其他情况:只有一个取值0
do//循环功能:零延迟情况:pass=0 编码 pass =1 编码完毕写数据 循环两次 其它情况:只做一次 多线程控制编码与写数据
{
/* getEncodedPicture() should block until the FrameEncoder has completed
* encoding the frame. This is how back-pressure through the API is
* accomplished when the encoder is full */
if (!m_bZeroLatency || pass)//零延迟情况:只有在pass=1的时候才会进入 其它情况:都进入
outFrame = curEncoder->getEncodedPicture(m_nalList);//获取已经编码完毕的帧???多线程等待
if (outFrame)//如果已经编码过
{
Slice *slice = outFrame->m_encData->m_slice;
/* Free up pic_in->analysisData since it has already been used */
if (m_param->analysisMode == X265_ANALYSIS_LOAD)
freeAnalysis(&outFrame->m_analysisData);
if (pic_out)
{
PicYuv *recpic = outFrame->m_reconPic;
pic_out->poc = slice->m_poc;
pic_out->bitDepth = X265_DEPTH;
pic_out->userData = outFrame->m_userData;
pic_out->colorSpace = m_param->internalCsp;
pic_out->pts = outFrame->m_pts;
pic_out->dts = outFrame->m_dts;
switch (slice->m_sliceType)
{
case I_SLICE:
pic_out->sliceType = outFrame->m_lowres.bKeyframe ? X265_TYPE_IDR : X265_TYPE_I;
break;
case P_SLICE:
pic_out->sliceType = X265_TYPE_P;
break;
case B_SLICE:
pic_out->sliceType = X265_TYPE_B;
break;
}
pic_out->planes[0] = recpic->m_picOrg[0];
pic_out->stride[0] = (int)(recpic->m_stride * sizeof(pixel));
pic_out->planes[1] = recpic->m_picOrg[1];
pic_out->stride[1] = (int)(recpic->m_strideC * sizeof(pixel));
pic_out->planes[2] = recpic->m_picOrg[2];
pic_out->stride[2] = (int)(recpic->m_strideC * sizeof(pixel));
/* Dump analysis data from pic_out to file in save mode and free */
if (m_param->analysisMode == X265_ANALYSIS_SAVE)
{
pic_out->analysisData.poc = pic_out->poc;
pic_out->analysisData.sliceType = pic_out->sliceType;
pic_out->analysisData.numCUsInFrame = outFrame->m_analysisData.numCUsInFrame;
pic_out->analysisData.numPartitions = outFrame->m_analysisData.numPartitions;
pic_out->analysisData.interData = outFrame->m_analysisData.interData;
pic_out->analysisData.intraData = outFrame->m_analysisData.intraData;
writeAnalysisFile(&pic_out->analysisData);
freeAnalysis(&pic_out->analysisData);
}
}
if (slice->m_sliceType == P_SLICE)
{
if (slice->m_weightPredTable[0][0][0].bPresentFlag)
m_numLumaWPFrames++;
if (slice->m_weightPredTable[0][0][1].bPresentFlag ||
slice->m_weightPredTable[0][0][2].bPresentFlag)
m_numChromaWPFrames++;
}
else if (slice->m_sliceType == B_SLICE)
{
bool bLuma = false, bChroma = false;
for (int l = 0; l < 2; l++)
{
if (slice->m_weightPredTable[l][0][0].bPresentFlag)
bLuma = true;
if (slice->m_weightPredTable[l][0][1].bPresentFlag ||
slice->m_weightPredTable[l][0][2].bPresentFlag)
bChroma = true;
}
if (bLuma)
m_numLumaWPBiFrames++;
if (bChroma)
m_numChromaWPBiFrames++;
}
if (m_aborted)
return -1;
finishFrameStats(outFrame, curEncoder, curEncoder->m_accessUnitBits);
/* Allow this frame to be recycled if no frame encoders are using it for reference */
if (!pic_out)
{
ATOMIC_DEC(&outFrame->m_countRefEncoders);
m_dpb->recycleUnreferenced();
}
else
m_exportedPic = outFrame;
m_numDelayedPic--;
ret = 1;
}//if (outFrame)
/* pop a single frame from decided list, then provide to frame encoder
* curEncoder is guaranteed to be idle at this point */
if (!pass)//零延迟情况:只有在pass=0的时候才会进入 其它情况:都进入
frameEnc = m_lookahead->getDecidedPicture();//获取已经得到帧类型的原始帧
if (frameEnc && !pass)//零延迟情况:只有在pass=0并且有可用帧的时候才会进入 其它情况:在有可用帧的时候进入
{
/* give this frame a FrameData instance before encoding */
if (m_dpb->m_picSymFreeList)//???
{
frameEnc->m_encData = m_dpb->m_picSymFreeList;
m_dpb->m_picSymFreeList = m_dpb->m_picSymFreeList->m_freeListNext;
frameEnc->reinit(m_sps);
}
else
{
frameEnc->allocEncodeData(m_param, m_sps);//申请重构帧内存并初始化为0,申请一帧CTU的存储空间,初始化CTU、初始化统计信息
Slice* slice = frameEnc->m_encData->m_slice;//获取slice指针
slice->m_sps = &m_sps;//获取SPS指针
slice->m_pps = &m_pps;//获取PPS指针
slice->m_maxNumMergeCand = m_param->maxNumMergeCand;//获取配置的Merge选择的候选个数
slice->m_endCUAddr = slice->realEndAddress(m_sps.numCUsInFrame * NUM_4x4_PARTITIONS);//一帧中最后实际像素在帧中的4x4块标号+1
frameEnc->m_reconPic->m_cuOffsetC = m_cuOffsetC;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中
frameEnc->m_reconPic->m_cuOffsetY = m_cuOffsetY;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中
frameEnc->m_reconPic->m_buOffsetC = m_buOffsetC;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中
frameEnc->m_reconPic->m_buOffsetY = m_buOffsetY;//将encoder offset指针赋值到对应frameEnc->m_reconPic对象中
}
curEncoder->m_rce.encodeOrder = m_encodedFrameNum++;//获取当前编码顺序(从0开始计数)
if (m_bframeDelay)//有延迟 (获取DTS)
{
int64_t *prevReorderedPts = m_prevReorderedPts;
frameEnc->m_dts = m_encodedFrameNum > m_bframeDelay
? prevReorderedPts[(m_encodedFrameNum - m_bframeDelay) % m_bframeDelay] //在开始不多于延迟帧数的时候需要计算,其它直接从数组中获取
: frameEnc->m_reorderedPts - m_bframeDelayTime;
prevReorderedPts[m_encodedFrameNum % m_bframeDelay] = frameEnc->m_reorderedPts;
}
else
frameEnc->m_dts = frameEnc->m_reorderedPts;//零延迟:解码顺序等于编码顺序
/* Allocate analysis data before encode in save mode. This is allocated in frameEnc */
if (m_param->analysisMode == X265_ANALYSIS_SAVE)//????
{
x265_analysis_data* analysis = &frameEnc->m_analysisData;
analysis->poc = frameEnc->m_poc;
analysis->sliceType = frameEnc->m_lowres.sliceType;
uint32_t widthInCU = (m_param->sourceWidth + g_maxCUSize - 1) >> g_maxLog2CUSize;
uint32_t heightInCU = (m_param->sourceHeight + g_maxCUSize - 1) >> g_maxLog2CUSize;
uint32_t numCUsInFrame = widthInCU * heightInCU;
analysis->numCUsInFrame = numCUsInFrame;
analysis->numPartitions = NUM_4x4_PARTITIONS;
allocAnalysis(analysis);
}
/* determine references, setup RPS, etc */
m_dpb->prepareEncode(frameEnc);//设置NAL单元类型,将待编码帧加入DPB列表,获取slice参考帧列表等slice参量,将该帧的参考帧的被参考次数加一
if (m_param->rc.rateControlMode != X265_RC_CQP)//如果当前不是固定QP模式
m_lookahead->getEstimatedPictureCost(frameEnc);//获取当前帧每个CTU行对应下采样帧的每个8x8的块cost的累计值
/* Allow FrameEncoder::compressFrame() to start in the frame encoder thread */
if (!curEncoder->startCompressFrame(frameEnc))//触发compressframe()进行编码
m_aborted = true;//异常状态标记
}//if (frameEnc && !pass)
else if (m_encodedFrameNum)//???零延迟情况:只有在pass=0??? 其它情况:一般不进入???
m_rateControl->setFinalFrameCount(m_encodedFrameNum);
}
while (m_bZeroLatency && ++pass < 2);//循环功能:零延迟情况:pass=0 编码 pass =1 编码完毕写数据 循环两次 其它情况:只做一次 多线程控制编码与写数据
return ret;
}
int Encoder::reconfigureParam(x265_param* encParam, x265_param* param)
{
encParam->maxNumReferences = param->maxNumReferences; // never uses more refs than specified in stream headers
encParam->bEnableLoopFilter = param->bEnableLoopFilter;
encParam->deblockingFilterTCOffset = param->deblockingFilterTCOffset;
encParam->deblockingFilterBetaOffset = param->deblockingFilterBetaOffset;
encParam->bEnableFastIntra = param->bEnableFastIntra;
encParam->bEnableEarlySkip = param->bEnableEarlySkip;
encParam->bEnableTemporalMvp = param->bEnableTemporalMvp;
/* Scratch buffer prevents me_range from being increased for esa/tesa
if (param->searchMethod < X265_FULL_SEARCH || param->searchMethod < encParam->searchRange)
encParam->searchRange = param->searchRange; */
encParam->noiseReductionInter = param->noiseReductionInter;
encParam->noiseReductionIntra = param->noiseReductionIntra;
/* We can't switch out of subme=0 during encoding. */
if (encParam->subpelRefine)
encParam->subpelRefine = param->subpelRefine;
encParam->rdoqLevel = param->rdoqLevel;
encParam->rdLevel = param->rdLevel;
encParam->bEnableTSkipFast = param->bEnableTSkipFast;
encParam->psyRd = param->psyRd;
encParam->psyRdoq = param->psyRdoq;
encParam->bEnableSignHiding = param->bEnableSignHiding;
encParam->bEnableFastIntra = param->bEnableFastIntra;
encParam->maxTUSize = param->maxTUSize;
return x265_check_params(encParam);
}
void EncStats::addPsnr(double psnrY, double psnrU, double psnrV)
{
m_psnrSumY += psnrY;
m_psnrSumU += psnrU;
m_psnrSumV += psnrV;
}
void EncStats::addBits(uint64_t bits)
{
m_accBits += bits;
m_numPics++;
}
void EncStats::addSsim(double ssim)
{
m_globalSsim += ssim;
}
void EncStats::addQP(double aveQp)
{
m_totalQp += aveQp;
}
char* Encoder::statsCSVString(EncStats& stat, char* buffer)
{
if (!stat.m_numPics)
{
sprintf(buffer, "-, -, -, -, -, -, -, ");
return buffer;
}
double fps = (double)m_param->fpsNum / m_param->fpsDenom;
double scale = fps / 1000 / (double)stat.m_numPics;
int len = sprintf(buffer, "%-6u, ", stat.m_numPics);
len += sprintf(buffer + len, "%2.2lf, ", stat.m_totalQp / (double)stat.m_numPics);
len += sprintf(buffer + len, "%-8.2lf, ", stat.m_accBits * scale);
if (m_param->bEnablePsnr)
{
len += sprintf(buffer + len, "%.3lf, %.3lf, %.3lf, ",
stat.m_psnrSumY / (double)stat.m_numPics,
stat.m_psnrSumU / (double)stat.m_numPics,
stat.m_psnrSumV / (double)stat.m_numPics);
}
else
len += sprintf(buffer + len, "-, -, -, ");
if (m_param->bEnableSsim)
sprintf(buffer + len, "%.3lf, ", x265_ssim2dB(stat.m_globalSsim / (double)stat.m_numPics));
else
sprintf(buffer + len, "-, ");
return buffer;
}
char* Encoder::statsString(EncStats& stat, char* buffer)
{
double fps = (double)m_param->fpsNum / m_param->fpsDenom;
double scale = fps / 1000 / (double)stat.m_numPics;
int len = sprintf(buffer, "%6u, ", stat.m_numPics);
len += sprintf(buffer + len, "Avg QP:%2.2lf", stat.m_totalQp / (double)stat.m_numPics);
len += sprintf(buffer + len, " kb/s: %-8.2lf", stat.m_accBits * scale);
if (m_param->bEnablePsnr)
{
len += sprintf(buffer + len, " PSNR Mean: Y:%.3lf U:%.3lf V:%.3lf",
stat.m_psnrSumY / (double)stat.m_numPics,
stat.m_psnrSumU / (double)stat.m_numPics,
stat.m_psnrSumV / (double)stat.m_numPics);
}
if (m_param->bEnableSsim)
{
sprintf(buffer + len, " SSIM Mean: %.6lf (%.3lfdB)",
stat.m_globalSsim / (double)stat.m_numPics,
x265_ssim2dB(stat.m_globalSsim / (double)stat.m_numPics));
}
return buffer;
}
void Encoder::printSummary()
{
if (m_param->logLevel < X265_LOG_INFO)
return;
char buffer[200];
if (m_analyzeI.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame I: %s\n", statsString(m_analyzeI, buffer));
if (m_analyzeP.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame P: %s\n", statsString(m_analyzeP, buffer));
if (m_analyzeB.m_numPics)
x265_log(m_param, X265_LOG_INFO, "frame B: %s\n", statsString(m_analyzeB, buffer));
if (m_analyzeAll.m_numPics)
x265_log(m_param, X265_LOG_INFO, "global : %s\n", statsString(m_analyzeAll, buffer));
if (m_param->bEnableWeightedPred && m_analyzeP.m_numPics)
{
x265_log(m_param, X265_LOG_INFO, "Weighted P-Frames: Y:%.1f%% UV:%.1f%%\n",
(float)100.0 * m_numLumaWPFrames / m_analyzeP.m_numPics,
(float)100.0 * m_numChromaWPFrames / m_analyzeP.m_numPics);
}
if (m_param->bEnableWeightedBiPred && m_analyzeB.m_numPics)
{
x265_log(m_param, X265_LOG_INFO, "Weighted B-Frames: Y:%.1f%% UV:%.1f%%\n",
(float)100.0 * m_numLumaWPBiFrames / m_analyzeB.m_numPics,
(float)100.0 * m_numChromaWPBiFrames / m_analyzeB.m_numPics);
}
int pWithB = 0;
for (int i = 0; i <= m_param->bframes; i++)
pWithB += m_lookahead->m_histogram[i];
if (pWithB)
{
int p = 0;
for (int i = 0; i <= m_param->bframes; i++)
p += sprintf(buffer + p, "%.1f%% ", 100. * m_lookahead->m_histogram[i] / pWithB);
x265_log(m_param, X265_LOG_INFO, "consecutive B-frames: %s\n", buffer);
}
if (m_param->bLossless)
{
float frameSize = (float)(m_param->sourceWidth - m_sps.conformanceWindow.rightOffset) *
(m_param->sourceHeight - m_sps.conformanceWindow.bottomOffset);
float uncompressed = frameSize * X265_DEPTH * m_analyzeAll.m_numPics;
x265_log(m_param, X265_LOG_INFO, "lossless compression ratio %.2f::1\n", uncompressed / m_analyzeAll.m_accBits);
}
#if DETAILED_CU_STATS
/* Summarize stats from all frame encoders */
CUStats cuStats;
for (int i = 0; i < m_param->frameNumThreads; i++)
cuStats.accumulate(m_frameEncoder[i]->m_cuStats);
if (!cuStats.totalCTUTime)
return;
int totalWorkerCount = 0;
for (int i = 0; i < m_numPools; i++)
totalWorkerCount += m_threadPool[i].m_numWorkers;
int64_t batchElapsedTime, coopSliceElapsedTime;
uint64_t batchCount, coopSliceCount;
m_lookahead->getWorkerStats(batchElapsedTime, batchCount, coopSliceElapsedTime, coopSliceCount);
int64_t lookaheadWorkerTime = m_lookahead->m_slicetypeDecideElapsedTime + m_lookahead->m_preLookaheadElapsedTime +
batchElapsedTime + coopSliceElapsedTime;
int64_t totalWorkerTime = cuStats.totalCTUTime + cuStats.loopFilterElapsedTime + cuStats.pmodeTime +
cuStats.pmeTime + lookaheadWorkerTime + cuStats.weightAnalyzeTime;
int64_t elapsedEncodeTime = x265_mdate() - m_encodeStartTime;
int64_t interRDOTotalTime = 0, intraRDOTotalTime = 0;
uint64_t interRDOTotalCount = 0, intraRDOTotalCount = 0;
for (uint32_t i = 0; i <= g_maxCUDepth; i++)
{
interRDOTotalTime += cuStats.interRDOElapsedTime[i];
intraRDOTotalTime += cuStats.intraRDOElapsedTime[i];
interRDOTotalCount += cuStats.countInterRDO[i];
intraRDOTotalCount += cuStats.countIntraRDO[i];
}
/* Time within compressCTU() and pmode tasks not captured by ME, Intra mode selection, or RDO (2Nx2N merge, 2Nx2N bidir, etc) */
int64_t unaccounted = (cuStats.totalCTUTime + cuStats.pmodeTime) -
(cuStats.intraAnalysisElapsedTime + cuStats.motionEstimationElapsedTime + interRDOTotalTime + intraRDOTotalTime);
#define ELAPSED_SEC(val) ((double)(val) / 1000000)
#define ELAPSED_MSEC(val) ((double)(val) / 1000)
if (m_param->bDistributeMotionEstimation && cuStats.countPMEMasters)
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n",
100.0 * (cuStats.motionEstimationElapsedTime + cuStats.pmeTime) / totalWorkerTime,
(double)cuStats.countMotionEstimate / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PME masters per inter CU, each blocked an average of %.3lf ns\n",
(double)cuStats.countPMEMasters / cuStats.countMotionEstimate,
(double)cuStats.pmeBlockTime / cuStats.countPMEMasters);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PME master, each took an average of %.3lf ms\n",
(double)cuStats.countPMETasks / cuStats.countPMEMasters,
ELAPSED_MSEC(cuStats.pmeTime) / cuStats.countPMETasks);
}
else
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in motion estimation, averaging %.3lf CU inter modes per CTU\n",
100.0 * cuStats.motionEstimationElapsedTime / totalWorkerTime,
(double)cuStats.countMotionEstimate / cuStats.totalCTUs);
}
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra analysis, averaging %.3lf Intra PUs per CTU\n",
100.0 * cuStats.intraAnalysisElapsedTime / totalWorkerTime,
(double)cuStats.countIntraAnalysis / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in inter RDO, measuring %.3lf inter/merge predictions per CTU\n",
100.0 * interRDOTotalTime / totalWorkerTime,
(double)interRDOTotalCount / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in intra RDO, measuring %.3lf intra predictions per CTU\n",
100.0 * intraRDOTotalTime / totalWorkerTime,
(double)intraRDOTotalCount / cuStats.totalCTUs);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in loop filters, average %.3lf ms per call\n",
100.0 * cuStats.loopFilterElapsedTime / totalWorkerTime,
ELAPSED_MSEC(cuStats.loopFilterElapsedTime) / cuStats.countLoopFilter);
if (cuStats.countWeightAnalyze && cuStats.weightAnalyzeTime)
{
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in weight analysis, average %.3lf ms per call\n",
100.0 * cuStats.weightAnalyzeTime / totalWorkerTime,
ELAPSED_MSEC(cuStats.weightAnalyzeTime) / cuStats.countWeightAnalyze);
}
if (m_param->bDistributeModeAnalysis && cuStats.countPModeMasters)
{
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf PMODE masters per CTU, each blocked an average of %.3lf ns\n",
(double)cuStats.countPModeMasters / cuStats.totalCTUs,
(double)cuStats.pmodeBlockTime / cuStats.countPModeMasters);
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf slaves per PMODE master, each took average of %.3lf ms\n",
(double)cuStats.countPModeTasks / cuStats.countPModeMasters,
ELAPSED_MSEC(cuStats.pmodeTime) / cuStats.countPModeTasks);
}
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in slicetypeDecide (avg %.3lfms) and prelookahead (avg %.3lfms)\n",
100.0 * lookaheadWorkerTime / totalWorkerTime,
ELAPSED_MSEC(m_lookahead->m_slicetypeDecideElapsedTime) / m_lookahead->m_countSlicetypeDecide,
ELAPSED_MSEC(m_lookahead->m_preLookaheadElapsedTime) / m_lookahead->m_countPreLookahead);
x265_log(m_param, X265_LOG_INFO, "CU: %%%05.2lf time spent in other tasks\n",
100.0 * unaccounted / totalWorkerTime);
if (intraRDOTotalTime && intraRDOTotalCount)
{
x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.intraRDOElapsedTime[0] / intraRDOTotalTime, // 64
100.0 * cuStats.intraRDOElapsedTime[1] / intraRDOTotalTime, // 32
100.0 * cuStats.intraRDOElapsedTime[2] / intraRDOTotalTime, // 16
100.0 * cuStats.intraRDOElapsedTime[3] / intraRDOTotalTime); // 8
x265_log(m_param, X265_LOG_INFO, "CU: Intra RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.countIntraRDO[0] / intraRDOTotalCount, // 64
100.0 * cuStats.countIntraRDO[1] / intraRDOTotalCount, // 32
100.0 * cuStats.countIntraRDO[2] / intraRDOTotalCount, // 16
100.0 * cuStats.countIntraRDO[3] / intraRDOTotalCount); // 8
}
if (interRDOTotalTime && interRDOTotalCount)
{
x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO time per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.interRDOElapsedTime[0] / interRDOTotalTime, // 64
100.0 * cuStats.interRDOElapsedTime[1] / interRDOTotalTime, // 32
100.0 * cuStats.interRDOElapsedTime[2] / interRDOTotalTime, // 16
100.0 * cuStats.interRDOElapsedTime[3] / interRDOTotalTime); // 8
x265_log(m_param, X265_LOG_INFO, "CU: Inter RDO calls per depth %%%05.2lf %%%05.2lf %%%05.2lf %%%05.2lf\n",
100.0 * cuStats.countInterRDO[0] / interRDOTotalCount, // 64
100.0 * cuStats.countInterRDO[1] / interRDOTotalCount, // 32
100.0 * cuStats.countInterRDO[2] / interRDOTotalCount, // 16
100.0 * cuStats.countInterRDO[3] / interRDOTotalCount); // 8
}
x265_log(m_param, X265_LOG_INFO, "CU: " X265_LL " %dX%d CTUs compressed in %.3lf seconds, %.3lf CTUs per worker-second\n",
cuStats.totalCTUs, g_maxCUSize, g_maxCUSize,
ELAPSED_SEC(totalWorkerTime),
cuStats.totalCTUs / ELAPSED_SEC(totalWorkerTime));
if (m_threadPool)
x265_log(m_param, X265_LOG_INFO, "CU: %.3lf average worker utilization, %%%05.2lf of theoretical maximum utilization\n",
(double)totalWorkerTime / elapsedEncodeTime,
100.0 * totalWorkerTime / (elapsedEncodeTime * totalWorkerCount));
#undef ELAPSED_SEC
#undef ELAPSED_MSEC
#endif
if (!m_param->bLogCuStats)
return;
for (int sliceType = 2; sliceType >= 0; sliceType--)
{
if (sliceType == P_SLICE && !m_analyzeP.m_numPics)
continue;
if (sliceType == B_SLICE && !m_analyzeB.m_numPics)
continue;
StatisticLog finalLog;
for (uint32_t depth = 0; depth <= g_maxCUDepth; depth++)
{
int cuSize = g_maxCUSize >> depth;
for (int i = 0; i < m_param->frameNumThreads; i++)
{
StatisticLog& enclog = m_frameEncoder[i]->m_sliceTypeLog[sliceType];
if (!depth)
finalLog.totalCu += enclog.totalCu;
finalLog.cntIntra[depth] += enclog.cntIntra[depth];
for (int m = 0; m < INTER_MODES; m++)
{
if (m < INTRA_MODES)
finalLog.cuIntraDistribution[depth][m] += enclog.cuIntraDistribution[depth][m];
finalLog.cuInterDistribution[depth][m] += enclog.cuInterDistribution[depth][m];
}
if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3)
finalLog.cntIntraNxN += enclog.cntIntraNxN;
if (sliceType != I_SLICE)
{
finalLog.cntTotalCu[depth] += enclog.cntTotalCu[depth];
finalLog.cntInter[depth] += enclog.cntInter[depth];
finalLog.cntSkipCu[depth] += enclog.cntSkipCu[depth];
}
}
uint64_t cntInter, cntSkipCu, cntIntra = 0, cntIntraNxN = 0, encCu = 0;
uint64_t cuInterDistribution[INTER_MODES], cuIntraDistribution[INTRA_MODES];
// check for 0/0, if true assign 0 else calculate percentage
for (int n = 0; n < INTER_MODES; n++)
{
if (!finalLog.cntInter[depth])
cuInterDistribution[n] = 0;
else
cuInterDistribution[n] = (finalLog.cuInterDistribution[depth][n] * 100) / finalLog.cntInter[depth];
if (n < INTRA_MODES)
{
if (!finalLog.cntIntra[depth])
{
cntIntraNxN = 0;
cuIntraDistribution[n] = 0;
}
else
{
cntIntraNxN = (finalLog.cntIntraNxN * 100) / finalLog.cntIntra[depth];
cuIntraDistribution[n] = (finalLog.cuIntraDistribution[depth][n] * 100) / finalLog.cntIntra[depth];
}
}
}
if (!finalLog.totalCu)
encCu = 0;
else if (sliceType == I_SLICE)
{
cntIntra = (finalLog.cntIntra[depth] * 100) / finalLog.totalCu;
cntIntraNxN = (finalLog.cntIntraNxN * 100) / finalLog.totalCu;
}
else
encCu = ((finalLog.cntIntra[depth] + finalLog.cntInter[depth]) * 100) / finalLog.totalCu;
if (sliceType == I_SLICE)
{
cntInter = 0;
cntSkipCu = 0;
}
else if (!finalLog.cntTotalCu[depth])
{
cntInter = 0;
cntIntra = 0;
cntSkipCu = 0;
}
else
{
cntInter = (finalLog.cntInter[depth] * 100) / finalLog.cntTotalCu[depth];
cntIntra = (finalLog.cntIntra[depth] * 100) / finalLog.cntTotalCu[depth];
cntSkipCu = (finalLog.cntSkipCu[depth] * 100) / finalLog.cntTotalCu[depth];
}
// print statistics
char stats[256] = { 0 };
int len = 0;
if (sliceType != I_SLICE)
len += sprintf(stats + len, " EncCU "X265_LL "%% Merge "X265_LL "%%", encCu, cntSkipCu);
if (cntInter)
{
len += sprintf(stats + len, " Inter "X265_LL "%%", cntInter);
if (m_param->bEnableAMP)
len += sprintf(stats + len, "(%dx%d "X265_LL "%% %dx%d "X265_LL "%% %dx%d "X265_LL "%% AMP "X265_LL "%%)",
cuSize, cuSize, cuInterDistribution[0],
cuSize / 2, cuSize, cuInterDistribution[2],
cuSize, cuSize / 2, cuInterDistribution[1],
cuInterDistribution[3]);
else if (m_param->bEnableRectInter)
len += sprintf(stats + len, "(%dx%d "X265_LL "%% %dx%d "X265_LL "%% %dx%d "X265_LL "%%)",
cuSize, cuSize, cuInterDistribution[0],
cuSize / 2, cuSize, cuInterDistribution[2],
cuSize, cuSize / 2, cuInterDistribution[1]);
}
if (cntIntra)
{
len += sprintf(stats + len, " Intra "X265_LL "%%(DC "X265_LL "%% P "X265_LL "%% Ang "X265_LL "%%",
cntIntra, cuIntraDistribution[0],
cuIntraDistribution[1], cuIntraDistribution[2]);
if (sliceType != I_SLICE)
{
if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3)
len += sprintf(stats + len, " %dx%d "X265_LL "%%", cuSize / 2, cuSize / 2, cntIntraNxN);
}
len += sprintf(stats + len, ")");
if (sliceType == I_SLICE)
{
if (cuSize == 8 && m_sps.quadtreeTULog2MinSize < 3)
len += sprintf(stats + len, " %dx%d: "X265_LL "%%", cuSize / 2, cuSize / 2, cntIntraNxN);
}
}
const char slicechars[] = "BPI";
if (stats[0])
x265_log(m_param, X265_LOG_INFO, "%c%-2d:%s\n", slicechars[sliceType], cuSize, stats);
}
}
}
void Encoder::fetchStats(x265_stats *stats, size_t statsSizeBytes)
{
if (statsSizeBytes >= sizeof(stats))
{
stats->globalPsnrY = m_analyzeAll.m_psnrSumY;
stats->globalPsnrU = m_analyzeAll.m_psnrSumU;
stats->globalPsnrV = m_analyzeAll.m_psnrSumV;
stats->encodedPictureCount = m_analyzeAll.m_numPics;
stats->totalWPFrames = m_numLumaWPFrames;
stats->accBits = m_analyzeAll.m_accBits;
stats->elapsedEncodeTime = (double)(x265_mdate() - m_encodeStartTime) / 1000000;
if (stats->encodedPictureCount > 0)
{
stats->globalSsim = m_analyzeAll.m_globalSsim / stats->encodedPictureCount;
stats->globalPsnr = (stats->globalPsnrY * 6 + stats->globalPsnrU + stats->globalPsnrV) / (8 * stats->encodedPictureCount);
stats->elapsedVideoTime = (double)stats->encodedPictureCount * m_param->fpsDenom / m_param->fpsNum;
stats->bitrate = (0.001f * stats->accBits) / stats->elapsedVideoTime;
}
else
{
stats->globalSsim = 0;
stats->globalPsnr = 0;
stats->bitrate = 0;
stats->elapsedVideoTime = 0;
}
}
/* If new statistics are added to x265_stats, we must check here whether the
* structure provided by the user is the new structure or an older one (for
* future safety) */
}
void Encoder::writeLog(int argc, char **argv)
{
if (m_csvfpt)
{
if (m_param->logLevel >= X265_LOG_FRAME)
{
// adding summary to a per-frame csv log file needs a summary header
fprintf(m_csvfpt, "\nSummary\n");
fputs(summaryCSVHeader, m_csvfpt);
}
// CLI arguments or other
for (int i = 1; i < argc; i++)
{
if (i) fputc(' ', m_csvfpt);
fputs(argv[i], m_csvfpt);
}
// current date and time
time_t now;
struct tm* timeinfo;
time(&now);
timeinfo = localtime(&now);
char buffer[200];
strftime(buffer, 128, "%c", timeinfo);
fprintf(m_csvfpt, ", %s, ", buffer);
x265_stats stats;
fetchStats(&stats, sizeof(stats));
// elapsed time, fps, bitrate
fprintf(m_csvfpt, "%.2f, %.2f, %.2f,",
stats.elapsedEncodeTime, stats.encodedPictureCount / stats.elapsedEncodeTime, stats.bitrate);
if (m_param->bEnablePsnr)
fprintf(m_csvfpt, " %.3lf, %.3lf, %.3lf, %.3lf,",
stats.globalPsnrY / stats.encodedPictureCount, stats.globalPsnrU / stats.encodedPictureCount,
stats.globalPsnrV / stats.encodedPictureCount, stats.globalPsnr);
else
fprintf(m_csvfpt, " -, -, -, -,");
if (m_param->bEnableSsim)
fprintf(m_csvfpt, " %.6f, %6.3f,", stats.globalSsim, x265_ssim2dB(stats.globalSsim));
else
fprintf(m_csvfpt, " -, -,");
fputs(statsCSVString(m_analyzeI, buffer), m_csvfpt);
fputs(statsCSVString(m_analyzeP, buffer), m_csvfpt);
fputs(statsCSVString(m_analyzeB, buffer), m_csvfpt);
fprintf(m_csvfpt, " %s\n", x265_version_str);
}
}
/**
* Produce an ascii(hex) representation of picture digest.
*
* Returns: a statically allocated null-terminated string. DO NOT FREE.
*/
static const char*digestToString(const unsigned char digest[3][16], int numChar)
{
const char* hex = "0123456789abcdef";
static char string[99];
int cnt = 0;
for (int yuvIdx = 0; yuvIdx < 3; yuvIdx++)
{
for (int i = 0; i < numChar; i++)
{
string[cnt++] = hex[digest[yuvIdx][i] >> 4];
string[cnt++] = hex[digest[yuvIdx][i] & 0xf];
}
string[cnt++] = ',';
}
string[cnt - 1] = '\0';
return string;
}
void Encoder::finishFrameStats(Frame* curFrame, FrameEncoder *curEncoder, uint64_t bits)
{
PicYuv* reconPic = curFrame->m_reconPic;
//===== calculate PSNR =====
int width = reconPic->m_picWidth - m_sps.conformanceWindow.rightOffset;
int height = reconPic->m_picHeight - m_sps.conformanceWindow.bottomOffset;
int size = width * height;
int maxvalY = 255 << (X265_DEPTH - 8);
int maxvalC = 255 << (X265_DEPTH - 8);
double refValueY = (double)maxvalY * maxvalY * size;
double refValueC = (double)maxvalC * maxvalC * size / 4.0;
uint64_t ssdY, ssdU, ssdV;
ssdY = curEncoder->m_SSDY;
ssdU = curEncoder->m_SSDU;
ssdV = curEncoder->m_SSDV;
double psnrY = (ssdY ? 10.0 * log10(refValueY / (double)ssdY) : 99.99);
double psnrU = (ssdU ? 10.0 * log10(refValueC / (double)ssdU) : 99.99);
double psnrV = (ssdV ? 10.0 * log10(refValueC / (double)ssdV) : 99.99);
FrameData& curEncData = *curFrame->m_encData;
Slice* slice = curEncData.m_slice;
//===== add bits, psnr and ssim =====
m_analyzeAll.addBits(bits);
m_analyzeAll.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeAll.addPsnr(psnrY, psnrU, psnrV);
double ssim = 0.0;
if (m_param->bEnableSsim && curEncoder->m_ssimCnt)
{
ssim = curEncoder->m_ssim / curEncoder->m_ssimCnt;
m_analyzeAll.addSsim(ssim);
}
if (slice->isIntra())
{
m_analyzeI.addBits(bits);
m_analyzeI.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeI.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeI.addSsim(ssim);
}
else if (slice->isInterP())
{
m_analyzeP.addBits(bits);
m_analyzeP.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeP.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeP.addSsim(ssim);
}
else if (slice->isInterB())
{
m_analyzeB.addBits(bits);
m_analyzeB.addQP(curEncData.m_avgQpAq);
if (m_param->bEnablePsnr)
m_analyzeB.addPsnr(psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
m_analyzeB.addSsim(ssim);
}
char c = (slice->isIntra() ? 'I' : slice->isInterP() ? 'P' : 'B');
int poc = slice->m_poc;
if (!IS_REFERENCED(curFrame))
c += 32; // lower case if unreferenced
// if debug log level is enabled, per frame console logging is performed
if (m_param->logLevel >= X265_LOG_DEBUG)
{
char buf[1024];
int p;
p = sprintf(buf, "POC:%d %c QP %2.2lf(%d) %10d bits", poc, c, curEncData.m_avgQpAq, slice->m_sliceQp, (int)bits);
if (m_param->rc.rateControlMode == X265_RC_CRF)
p += sprintf(buf + p, " RF:%.3lf", curEncData.m_rateFactor);
if (m_param->bEnablePsnr)
p += sprintf(buf + p, " [Y:%6.2lf U:%6.2lf V:%6.2lf]", psnrY, psnrU, psnrV);
if (m_param->bEnableSsim)
p += sprintf(buf + p, " [SSIM: %.3lfdB]", x265_ssim2dB(ssim));
if (!slice->isIntra())
{
int numLists = slice->isInterP() ? 1 : 2;
for (int list = 0; list < numLists; list++)
{
p += sprintf(buf + p, " [L%d ", list);
for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++)
{
int k = slice->m_refPOCList[list][ref] - slice->m_lastIDR;
p += sprintf(buf + p, "%d ", k);
}
p += sprintf(buf + p, "]");
}
}
if (m_param->decodedPictureHashSEI && m_param->logLevel >= X265_LOG_FULL)
{
const char* digestStr = NULL;
if (m_param->decodedPictureHashSEI == 1)
{
digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 16);
p += sprintf(buf + p, " [MD5:%s]", digestStr);
}
else if (m_param->decodedPictureHashSEI == 2)
{
digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 2);
p += sprintf(buf + p, " [CRC:%s]", digestStr);
}
else if (m_param->decodedPictureHashSEI == 3)
{
digestStr = digestToString(curEncoder->m_seiReconPictureDigest.m_digest, 4);
p += sprintf(buf + p, " [Checksum:%s]", digestStr);
}
}
x265_log(m_param, X265_LOG_DEBUG, "%s\n", buf);
}
if (m_param->logLevel >= X265_LOG_FRAME && m_csvfpt)
{
// per frame CSV logging if the file handle is valid
fprintf(m_csvfpt, "%d, %c-SLICE, %4d, %2.2lf, %10d,", m_outputCount++, c, poc, curEncData.m_avgQpAq, (int)bits);
if (m_param->rc.rateControlMode == X265_RC_CRF)
fprintf(m_csvfpt, "%.3lf,", curEncData.m_rateFactor);
double psnr = (psnrY * 6 + psnrU + psnrV) / 8;
if (m_param->bEnablePsnr)
fprintf(m_csvfpt, "%.3lf, %.3lf, %.3lf, %.3lf,", psnrY, psnrU, psnrV, psnr);
else
fputs(" -, -, -, -,", m_csvfpt);
if (m_param->bEnableSsim)
fprintf(m_csvfpt, " %.6f, %6.3f", ssim, x265_ssim2dB(ssim));
else
fputs(" -, -", m_csvfpt);
if (slice->isIntra())
fputs(", -, -", m_csvfpt);
else
{
int numLists = slice->isInterP() ? 1 : 2;
for (int list = 0; list < numLists; list++)
{
fprintf(m_csvfpt, ", ");
for (int ref = 0; ref < slice->m_numRefIdx[list]; ref++)
{
int k = slice->m_refPOCList[list][ref] - slice->m_lastIDR;
fprintf(m_csvfpt, " %d", k);
}
}
if (numLists == 1)
fputs(", -", m_csvfpt);
}
#define ELAPSED_MSEC(start, end) (((double)(end) - (start)) / 1000)
// detailed frame statistics
fprintf(m_csvfpt, ", %.1lf, %.1lf, %.1lf, %.1lf, %.1lf, %.1lf",
ELAPSED_MSEC(0, curEncoder->m_slicetypeWaitTime),
ELAPSED_MSEC(curEncoder->m_startCompressTime, curEncoder->m_row0WaitTime),
ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_endCompressTime),
ELAPSED_MSEC(curEncoder->m_row0WaitTime, curEncoder->m_allRowsAvailableTime),
ELAPSED_MSEC(0, curEncoder->m_totalWorkerElapsedTime),
ELAPSED_MSEC(0, curEncoder->m_totalNoWorkerTime));
if (curEncoder->m_totalActiveWorkerCount)
fprintf(m_csvfpt, ", %.3lf", (double)curEncoder->m_totalActiveWorkerCount / curEncoder->m_activeWorkerCountSamples);
else
fputs(", 1", m_csvfpt);
fprintf(m_csvfpt, ", %d", curEncoder->m_countRowBlocks);
fprintf(m_csvfpt, "\n");
fflush(stderr);
}
}
#if defined(_MSC_VER)
#pragma warning(disable: 4800) // forcing int to bool
#pragma warning(disable: 4127) // conditional expression is constant
#endif
void Encoder::getStreamHeaders(NALList& list, Entropy& sbacCoder, Bitstream& bs)
{
sbacCoder.setBitstream(&bs);
/* headers for start of bitstream */
bs.resetBits();
sbacCoder.codeVPS(m_vps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_VPS, bs);
bs.resetBits();
sbacCoder.codeSPS(m_sps, m_scalingList, m_vps.ptl);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_SPS, bs);
bs.resetBits();
sbacCoder.codePPS(m_pps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PPS, bs);
if (m_param->masteringDisplayColorVolume)
{
SEIMasteringDisplayColorVolume mdsei;
if (mdsei.parse(m_param->masteringDisplayColorVolume))
{
bs.resetBits();
mdsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
else
x265_log(m_param, X265_LOG_WARNING, "unable to parse mastering display color volume info\n");
}
if (m_param->contentLightLevelInfo)
{
SEIContentLightLevel cllsei;
if (cllsei.parse(m_param->contentLightLevelInfo))
{
bs.resetBits();
cllsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
else
x265_log(m_param, X265_LOG_WARNING, "unable to parse content light level info\n");
}
if (m_param->bEmitInfoSEI)
{
char *opts = x265_param2string(m_param);
if (opts)
{
char *buffer = X265_MALLOC(char, strlen(opts) + strlen(x265_version_str) +
strlen(x265_build_info_str) + 200);
if (buffer)
{
sprintf(buffer, "x265 (build %d) - %s:%s - H.265/HEVC codec - "
"Copyright 2013-2015 (c) Multicoreware Inc - "
"http://x265.org - options: %s",
X265_BUILD, x265_version_str, x265_build_info_str, opts);
bs.resetBits();
SEIuserDataUnregistered idsei;
idsei.m_userData = (uint8_t*)buffer;
idsei.m_userDataLength = (uint32_t)strlen(buffer);
idsei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
X265_FREE(buffer);
}
X265_FREE(opts);
}
}
if (m_param->bEmitHRDSEI || !!m_param->interlaceMode)//??????
{
/* Picture Timing and Buffering Period SEI require the SPS to be "activated" */
SEIActiveParameterSets sei;
sei.m_selfContainedCvsFlag = true;
sei.m_noParamSetUpdateFlag = true;
bs.resetBits();
sei.write(bs, m_sps);
bs.writeByteAlignment();
list.serialize(NAL_UNIT_PREFIX_SEI, bs);
}
}
void Encoder::initVPS(VPS *vps)
{
/* Note that much of the VPS is initialized by determineLevel() */
vps->ptl.progressiveSourceFlag = !m_param->interlaceMode;
vps->ptl.interlacedSourceFlag = !!m_param->interlaceMode;
vps->ptl.nonPackedConstraintFlag = false;
vps->ptl.frameOnlyConstraintFlag = !m_param->interlaceMode;
}
void Encoder::initSPS(SPS *sps)
{
sps->conformanceWindow = m_conformanceWindow;
sps->chromaFormatIdc = m_param->internalCsp;
sps->picWidthInLumaSamples = m_param->sourceWidth;
sps->picHeightInLumaSamples = m_param->sourceHeight;
sps->numCuInWidth = (m_param->sourceWidth + g_maxCUSize - 1) / g_maxCUSize;
sps->numCuInHeight = (m_param->sourceHeight + g_maxCUSize - 1) / g_maxCUSize;
sps->numCUsInFrame = sps->numCuInWidth * sps->numCuInHeight;
sps->numPartitions = NUM_4x4_PARTITIONS;
sps->numPartInCUSize = 1 << g_unitSizeDepth;
sps->log2MinCodingBlockSize = g_maxLog2CUSize - g_maxCUDepth;
sps->log2DiffMaxMinCodingBlockSize = g_maxCUDepth;
uint32_t maxLog2TUSize = (uint32_t)g_log2Size[m_param->maxTUSize];
sps->quadtreeTULog2MaxSize = X265_MIN(g_maxLog2CUSize, maxLog2TUSize);
sps->quadtreeTULog2MinSize = 2;
sps->quadtreeTUMaxDepthInter = m_param->tuQTMaxInterDepth;
sps->quadtreeTUMaxDepthIntra = m_param->tuQTMaxIntraDepth;
sps->bUseSAO = m_param->bEnableSAO;
sps->bUseAMP = m_param->bEnableAMP;
sps->maxAMPDepth = m_param->bEnableAMP ? g_maxCUDepth : 0;
sps->maxTempSubLayers = m_param->bEnableTemporalSubLayers ? 2 : 1;
sps->maxDecPicBuffering = m_vps.maxDecPicBuffering;
sps->numReorderPics = m_vps.numReorderPics;
sps->maxLatencyIncrease = m_vps.maxLatencyIncrease = m_param->bframes;
sps->bUseStrongIntraSmoothing = m_param->bEnableStrongIntraSmoothing;
sps->bTemporalMVPEnabled = m_param->bEnableTemporalMvp;
VUI& vui = sps->vuiParameters;
vui.aspectRatioInfoPresentFlag = !!m_param->vui.aspectRatioIdc;
vui.aspectRatioIdc = m_param->vui.aspectRatioIdc;
vui.sarWidth = m_param->vui.sarWidth;
vui.sarHeight = m_param->vui.sarHeight;
vui.overscanInfoPresentFlag = m_param->vui.bEnableOverscanInfoPresentFlag;
vui.overscanAppropriateFlag = m_param->vui.bEnableOverscanAppropriateFlag;
vui.videoSignalTypePresentFlag = m_param->vui.bEnableVideoSignalTypePresentFlag;
vui.videoFormat = m_param->vui.videoFormat;
vui.videoFullRangeFlag = m_param->vui.bEnableVideoFullRangeFlag;
vui.colourDescriptionPresentFlag = m_param->vui.bEnableColorDescriptionPresentFlag;
vui.colourPrimaries = m_param->vui.colorPrimaries;
vui.transferCharacteristics = m_param->vui.transferCharacteristics;
vui.matrixCoefficients = m_param->vui.matrixCoeffs;
vui.chromaLocInfoPresentFlag = m_param->vui.bEnableChromaLocInfoPresentFlag;
vui.chromaSampleLocTypeTopField = m_param->vui.chromaSampleLocTypeTopField;
vui.chromaSampleLocTypeBottomField = m_param->vui.chromaSampleLocTypeBottomField;
vui.defaultDisplayWindow.bEnabled = m_param->vui.bEnableDefaultDisplayWindowFlag;
vui.defaultDisplayWindow.rightOffset = m_param->vui.defDispWinRightOffset;
vui.defaultDisplayWindow.topOffset = m_param->vui.defDispWinTopOffset;
vui.defaultDisplayWindow.bottomOffset = m_param->vui.defDispWinBottomOffset;
vui.defaultDisplayWindow.leftOffset = m_param->vui.defDispWinLeftOffset;
vui.frameFieldInfoPresentFlag = !!m_param->interlaceMode;
vui.fieldSeqFlag = !!m_param->interlaceMode;
vui.hrdParametersPresentFlag = m_param->bEmitHRDSEI;
vui.timingInfo.numUnitsInTick = m_param->fpsDenom;
vui.timingInfo.timeScale = m_param->fpsNum;
}
void Encoder::initPPS(PPS *pps)
{
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv))
{
pps->bUseDQP = true;
pps->maxCuDQPDepth = g_log2Size[m_param->maxCUSize] - g_log2Size[m_param->rc.qgSize];
X265_CHECK(pps->maxCuDQPDepth <= 2, "max CU DQP depth cannot be greater than 2\n");
}
else
{
pps->bUseDQP = false;
pps->maxCuDQPDepth = 0;
}
pps->chromaQpOffset[0] = m_param->cbQpOffset;
pps->chromaQpOffset[1] = m_param->crQpOffset;
pps->bConstrainedIntraPred = m_param->bEnableConstrainedIntra;
pps->bUseWeightPred = m_param->bEnableWeightedPred;
pps->bUseWeightedBiPred = m_param->bEnableWeightedBiPred;
pps->bTransquantBypassEnabled = m_param->bCULossless || m_param->bLossless;
pps->bTransformSkipEnabled = m_param->bEnableTransformSkip;
pps->bSignHideEnabled = m_param->bEnableSignHiding;
pps->bDeblockingFilterControlPresent = !m_param->bEnableLoopFilter || m_param->deblockingFilterBetaOffset || m_param->deblockingFilterTCOffset;
pps->bPicDisableDeblockingFilter = !m_param->bEnableLoopFilter;
pps->deblockingFilterBetaOffsetDiv2 = m_param->deblockingFilterBetaOffset;
pps->deblockingFilterTcOffsetDiv2 = m_param->deblockingFilterTCOffset;
pps->bEntropyCodingSyncEnabled = m_param->bEnableWavefront;
}
void Encoder::configure(x265_param *p)
{
this->m_param = p;
if (p->keyframeMax < 0)
{
/* A negative max GOP size indicates the user wants only one I frame at
* the start of the stream. Set an infinite GOP distance and disable
* adaptive I frame placement */
p->keyframeMax = INT_MAX;
p->scenecutThreshold = 0;
}
else if (p->keyframeMax <= 1)
{
// disable lookahead for all-intra encodes
p->bFrameAdaptive = 0;
p->bframes = 0;
}
if (!p->keyframeMin)
{
double fps = (double)p->fpsNum / p->fpsDenom;
p->keyframeMin = X265_MIN((int)fps, p->keyframeMax / 10);
}
p->keyframeMin = X265_MAX(1, X265_MIN(p->keyframeMin, p->keyframeMax / 2 + 1));
if (!p->bframes)
p->bBPyramid = 0;
if (!p->rdoqLevel)
p->psyRdoq = 0;
/* Disable features which are not supported by the current RD level */
if (p->rdLevel < 3)
{
if (p->bCULossless) /* impossible */
x265_log(p, X265_LOG_WARNING, "--cu-lossless disabled, requires --rdlevel 3 or higher\n");
if (p->bEnableTransformSkip) /* impossible */
x265_log(p, X265_LOG_WARNING, "--tskip disabled, requires --rdlevel 3 or higher\n");
p->bCULossless = p->bEnableTransformSkip = 0;
}
if (p->rdLevel < 2)
{
if (p->bDistributeModeAnalysis) /* not useful */
x265_log(p, X265_LOG_WARNING, "--pmode disabled, requires --rdlevel 2 or higher\n");
p->bDistributeModeAnalysis = 0;
p->psyRd = 0; /* impossible */
if (p->bEnableRectInter) /* broken, not very useful */
x265_log(p, X265_LOG_WARNING, "--rect disabled, requires --rdlevel 2 or higher\n");
p->bEnableRectInter = 0;
}
if (!p->bEnableRectInter) /* not useful */
p->bEnableAMP = false;
/* In 444, chroma gets twice as much resolution, so halve quality when psy-rd is enabled */
if (p->internalCsp == X265_CSP_I444 && p->psyRd)
{
p->cbQpOffset += 6;
p->crQpOffset += 6;
}
if (p->bLossless)
{
p->rc.rateControlMode = X265_RC_CQP;
p->rc.qp = 4; // An oddity, QP=4 is more lossless than QP=0 and gives better lambdas
p->bEnableSsim = 0;
p->bEnablePsnr = 0;
}
if (p->rc.rateControlMode == X265_RC_CQP)
{
p->rc.aqMode = X265_AQ_NONE;
p->rc.bitrate = 0;
p->rc.cuTree = 0;
p->rc.aqStrength = 0;
}
if (p->rc.aqMode == 0 && p->rc.cuTree)
{
p->rc.aqMode = X265_AQ_VARIANCE;
p->rc.aqStrength = 0.0;
}
if (p->lookaheadDepth == 0 && p->rc.cuTree && !p->rc.bStatRead)
{
x265_log(p, X265_LOG_WARNING, "cuTree disabled, requires lookahead to be enabled\n");
p->rc.cuTree = 0;
}
if (p->maxTUSize > p->maxCUSize)
{
x265_log(p, X265_LOG_WARNING, "Max TU size should be less than or equal to max CU size, setting max TU size = %d\n", p->maxCUSize);
p->maxTUSize = p->maxCUSize;
}
if (p->rc.aqStrength == 0 && p->rc.cuTree == 0)
p->rc.aqMode = X265_AQ_NONE;
if (p->rc.aqMode == X265_AQ_NONE && p->rc.cuTree == 0)
p->rc.aqStrength = 0;
if (p->totalFrames && p->totalFrames <= 2 * ((float)p->fpsNum) / p->fpsDenom && p->rc.bStrictCbr)
p->lookaheadDepth = p->totalFrames;
if (p->scalingLists && p->internalCsp == X265_CSP_I444)
{
x265_log(p, X265_LOG_WARNING, "Scaling lists are not yet supported for 4:4:4 color space\n");
p->scalingLists = 0;
}
if (p->interlaceMode)
x265_log(p, X265_LOG_WARNING, "Support for interlaced video is experimental\n");
if (p->rc.rfConstantMin > p->rc.rfConstant)
{
x265_log(m_param, X265_LOG_WARNING, "CRF min must be less than CRF\n");
p->rc.rfConstantMin = 0;
}
if (p->analysisMode && (p->bDistributeModeAnalysis || p->bDistributeMotionEstimation))
{
x265_log(p, X265_LOG_ERROR, "Analysis load/save options incompatible with pmode/pme");
p->bDistributeMotionEstimation = p->bDistributeModeAnalysis = 0;
}
if (p->bEnableTemporalSubLayers && !p->bframes)
{
x265_log(p, X265_LOG_WARNING, "B frames not enabled, temporal sublayer disabled\n");
p->bEnableTemporalSubLayers = 0;
}
m_bframeDelay = p->bframes ? (p->bBPyramid ? 2 : 1) : 0;//延迟帧数
p->bFrameBias = X265_MIN(X265_MAX(-90, p->bFrameBias), 100);
if (p->logLevel < X265_LOG_INFO)
{
/* don't measure these metrics if they will not be reported */
p->bEnablePsnr = 0;
p->bEnableSsim = 0;
}
/* Warn users trying to measure PSNR/SSIM with psy opts on. */
if (p->bEnablePsnr || p->bEnableSsim)
{
const char *s = NULL;
if (p->psyRd || p->psyRdoq)
{
s = p->bEnablePsnr ? "psnr" : "ssim";
x265_log(p, X265_LOG_WARNING, "--%s used with psy on: results will be invalid!\n", s);
}
else if (!p->rc.aqMode && p->bEnableSsim)
{
x265_log(p, X265_LOG_WARNING, "--ssim used with AQ off: results will be invalid!\n");
s = "ssim";
}
else if (p->rc.aqStrength > 0 && p->bEnablePsnr)
{
x265_log(p, X265_LOG_WARNING, "--psnr used with AQ on: results will be invalid!\n");
s = "psnr";
}
if (s)
x265_log(p, X265_LOG_WARNING, "--tune %s should be used if attempting to benchmark %s!\n", s, s);
}
/* some options make no sense if others are disabled */
p->bSaoNonDeblocked &= p->bEnableSAO;
p->bEnableTSkipFast &= p->bEnableTransformSkip;
/* initialize the conformance window */
m_conformanceWindow.bEnabled = false;
m_conformanceWindow.rightOffset = 0;
m_conformanceWindow.topOffset = 0;
m_conformanceWindow.bottomOffset = 0;
m_conformanceWindow.leftOffset = 0;
/* set pad size if width is not multiple of the minimum CU size */
if (p->sourceWidth & (p->minCUSize - 1))
{
uint32_t rem = p->sourceWidth & (p->minCUSize - 1);
uint32_t padsize = p->minCUSize - rem;
p->sourceWidth += padsize;
m_conformanceWindow.bEnabled = true;
m_conformanceWindow.rightOffset = padsize;
}
/* set pad size if height is not multiple of the minimum CU size */
if (p->sourceHeight & (p->minCUSize - 1))
{
uint32_t rem = p->sourceHeight & (p->minCUSize - 1);
uint32_t padsize = p->minCUSize - rem;
p->sourceHeight += padsize;
m_conformanceWindow.bEnabled = true;
m_conformanceWindow.bottomOffset = padsize;
}
if (p->bDistributeModeAnalysis && p->analysisMode)
{
p->analysisMode = X265_ANALYSIS_OFF;
x265_log(p, X265_LOG_WARNING, "Analysis save and load mode not supported for distributed mode analysis\n");
}
bool bIsVbv = m_param->rc.vbvBufferSize > 0 && m_param->rc.vbvMaxBitrate > 0;
if (!m_param->bLossless && (m_param->rc.aqMode || bIsVbv))
{
if (p->rc.qgSize < X265_MAX(16, p->minCUSize))
{
p->rc.qgSize = X265_MAX(16, p->minCUSize);
x265_log(p, X265_LOG_WARNING, "QGSize should be greater than or equal to 16 and minCUSize, setting QGSize = %d\n", p->rc.qgSize);
}
if (p->rc.qgSize > p->maxCUSize)
{
p->rc.qgSize = p->maxCUSize;
x265_log(p, X265_LOG_WARNING, "QGSize should be less than or equal to maxCUSize, setting QGSize = %d\n", p->rc.qgSize);
}
}
else
m_param->rc.qgSize = p->maxCUSize;
}
void Encoder::allocAnalysis(x265_analysis_data* analysis)
{
analysis->interData = analysis->intraData = NULL;
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
analysis_intra_data *intraData = (analysis_intra_data*)analysis->intraData;
CHECKED_MALLOC_ZERO(intraData, analysis_intra_data, 1);
CHECKED_MALLOC(intraData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->partSizes, char, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(intraData->chromaModes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
analysis->intraData = intraData;
}
else
{
analysis_inter_data *interData = (analysis_inter_data*)analysis->interData;
CHECKED_MALLOC_ZERO(interData, analysis_inter_data, 1);
CHECKED_MALLOC_ZERO(interData->ref, int32_t, analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2);
CHECKED_MALLOC(interData->depth, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC(interData->modes, uint8_t, analysis->numPartitions * analysis->numCUsInFrame);
CHECKED_MALLOC_ZERO(interData->bestMergeCand, uint32_t, analysis->numCUsInFrame * CUGeom::MAX_GEOMS);
analysis->interData = interData;
}
return;
fail:
freeAnalysis(analysis);
m_aborted = true;
}
void Encoder::freeAnalysis(x265_analysis_data* analysis)
{
if (analysis->intraData)
{
X265_FREE(((analysis_intra_data*)analysis->intraData)->depth);
X265_FREE(((analysis_intra_data*)analysis->intraData)->modes);
X265_FREE(((analysis_intra_data*)analysis->intraData)->partSizes);
X265_FREE(((analysis_intra_data*)analysis->intraData)->chromaModes);
X265_FREE(analysis->intraData);
}
else
{
X265_FREE(((analysis_inter_data*)analysis->interData)->ref);
X265_FREE(((analysis_inter_data*)analysis->interData)->depth);
X265_FREE(((analysis_inter_data*)analysis->interData)->modes);
X265_FREE(((analysis_inter_data*)analysis->interData)->bestMergeCand);
X265_FREE(analysis->interData);
}
}
void Encoder::readAnalysisFile(x265_analysis_data* analysis, int curPoc)
{
#define X265_FREAD(val, size, readSize, fileOffset)\
if (fread(val, size, readSize, fileOffset) != readSize)\
{\
x265_log(NULL, X265_LOG_ERROR, "Error reading analysis data\n");\
freeAnalysis(analysis);\
m_aborted = true;\
return;\
}\
static uint64_t consumedBytes = 0;
static uint64_t totalConsumedBytes = 0;
fseeko(m_analysisFile, totalConsumedBytes, SEEK_SET);
int poc; uint32_t frameRecordSize;
X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FREAD(&poc, sizeof(int), 1, m_analysisFile);
uint64_t currentOffset = totalConsumedBytes;
/* Seeking to the right frame Record */
while (poc != curPoc && !feof(m_analysisFile))
{
currentOffset += frameRecordSize;
fseeko(m_analysisFile, currentOffset, SEEK_SET);
X265_FREAD(&frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FREAD(&poc, sizeof(int), 1, m_analysisFile);
}
if (poc != curPoc || feof(m_analysisFile))
{
x265_log(NULL, X265_LOG_WARNING, "Error reading analysis data: Cannot find POC %d\n", curPoc);
freeAnalysis(analysis);
return;
}
/* Now arrived at the right frame, read the record */
analysis->poc = poc;
analysis->frameRecordSize = frameRecordSize;
X265_FREAD(&analysis->sliceType, sizeof(int), 1, m_analysisFile);
X265_FREAD(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile);
X265_FREAD(&analysis->numPartitions, sizeof(int), 1, m_analysisFile);
/* Memory is allocated for inter and intra analysis data based on the slicetype */
allocAnalysis(analysis);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
X265_FREAD(((analysis_intra_data *)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_intra_data *)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
analysis->sliceType = X265_TYPE_I;
consumedBytes += frameRecordSize;
}
else if (analysis->sliceType == X265_TYPE_P)
{
X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
consumedBytes += frameRecordSize;
totalConsumedBytes = consumedBytes;
}
else
{
X265_FREAD(((analysis_inter_data *)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FREAD(((analysis_inter_data *)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
consumedBytes += frameRecordSize;
}
#undef X265_FREAD
}
void Encoder::writeAnalysisFile(x265_analysis_data* analysis)
{
#define X265_FWRITE(val, size, writeSize, fileOffset)\
if (fwrite(val, size, writeSize, fileOffset) < writeSize)\
{\
x265_log(NULL, X265_LOG_ERROR, "Error writing analysis data\n");\
freeAnalysis(analysis);\
m_aborted = true;\
return;\
}\
/* calculate frameRecordSize */
analysis->frameRecordSize = sizeof(analysis->frameRecordSize) + sizeof(analysis->poc) + sizeof(analysis->sliceType) +
sizeof(analysis->numCUsInFrame) + sizeof(analysis->numPartitions);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 4;
else if (analysis->sliceType == X265_TYPE_P)
{
analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU;
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2;
analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS;
}
else
{
analysis->frameRecordSize += sizeof(int32_t) * analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2;
analysis->frameRecordSize += sizeof(uint8_t) * analysis->numCUsInFrame * analysis->numPartitions * 2;
analysis->frameRecordSize += sizeof(uint32_t) * analysis->numCUsInFrame * CUGeom::MAX_GEOMS;
}
X265_FWRITE(&analysis->frameRecordSize, sizeof(uint32_t), 1, m_analysisFile);
X265_FWRITE(&analysis->poc, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->sliceType, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->numCUsInFrame, sizeof(int), 1, m_analysisFile);
X265_FWRITE(&analysis->numPartitions, sizeof(int), 1, m_analysisFile);
if (analysis->sliceType == X265_TYPE_IDR || analysis->sliceType == X265_TYPE_I)
{
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->partSizes, sizeof(char), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_intra_data*)analysis->intraData)->chromaModes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
}
else if (analysis->sliceType == X265_TYPE_P)
{
X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
}
else
{
X265_FWRITE(((analysis_inter_data*)analysis->interData)->ref, sizeof(int32_t), analysis->numCUsInFrame * X265_MAX_PRED_MODE_PER_CTU * 2, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->depth, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->modes, sizeof(uint8_t), analysis->numCUsInFrame * analysis->numPartitions, m_analysisFile);
X265_FWRITE(((analysis_inter_data*)analysis->interData)->bestMergeCand, sizeof(uint32_t), analysis->numCUsInFrame * CUGeom::MAX_GEOMS, m_analysisFile);
}
#undef X265_FWRITE
}