C语言里可以用printf(),%f来实现浮点数的格式化输出,用cout呢。。。?
下面的方法是在网上找到的,如果各位有别的办法谢谢留下...
iomanip.h是I/O流控制头文件,就像C里面的格式化输出一样.以下是一些常的:
dec 置基数为10 相当于"%d"
hex 置基数为16 相当于"%X"
oct 置基数为8 相当于"%o"
setfill(c) 设填充字符为c
setprecision(n) 设显示小数精度为n位
setw(n) 设域宽为n个字符
setioflags(ios::fixed) 固定的浮点显示
setioflags(ios::scientific) 指数表示
setiosflags(ios::left) 左对齐
setiosflags(ios::right) 右对齐
setiosflags(ios::skipws 忽略前导空白
setiosflags(ios::uppercase) 16进制数大写输出
setiosflags(ios::lowercase) 16进制小写输出
setiosflags(ios::showpoint) 强制显示小数点
setiosflags(ios::showpos) 强制显示符号
#include
use namespace std;
double d=11.23456;
cout<
输出结果:
11.2346
11.2
11.23456
11.2345600
C++格式化输出浮点数
view plaincopy to clipboardprint?
01.#include
02.using std::cout;
03.using std::endl;
04.using std::fixed;
05.using std::scientific;
06.
07.int main()
08.{
09. double x = 0.001234567;
10. double y = 1.946e9;
11.
12. cout << "Displayed in default format:" << endl << x << '\t' << y << endl;
13.
14. cout << "\nDisplayed in scientific format:" << endl << scientific << x << '\t' << y << endl;
15.
16. cout << "\nDisplayed in fixed format:" << endl << fixed << x << '\t' << y << endl;
17. return 0;
18.}
#include
using std::cout;
using std::endl;
using std::fixed;
using std::scientific;
int main()
{
double x = 0.001234567;
double y = 1.946e9;
cout << "Displayed in default format:" << endl << x << '\t' << y << endl;
cout << "\nDisplayed in scientific format:" << endl << scientific << x << '\t' << y << endl;
cout << "\nDisplayed in fixed format:" << endl << fixed << x << '\t' << y << endl;
return 0;
}
Displayed in default format:
0.00123457 1.946e+009
Displayed in scientific format:
1.234567e-003 1.946000e+009
Displayed in fixed format:
0.001235 1946000000.000000
view plaincopy to clipboardprint?
01.#include
02.
03.main(void)
04.{
05. float a=100100.0, b=0.08;
06. cout.setf(ios::right|ios::scientific|ios::showpoint);
07. cout.width(20);
08. cout <<(-a*b);
09.
10. return 0;
11.}
#include
main(void)
{
float a=100100.0, b=0.08;
cout.setf(ios::right|ios::scientific|ios::showpoint);
cout.width(20);
cout <<(-a*b);
return 0;
}
-8.008000e+003
view plaincopy to clipboardprint?
01.#include
02.#include
03.#include
04.using std::cout;
05.using std::endl;
06.using std::setprecision;
07.using std::numeric_limits;
08.
09.int main() {
10. const double pi = 3.14;
11. cout << endl;
12.
13. for(double radius = .2 ; radius <= 3.0 ; radius += .2)
14. cout << "radius = "
15. << setprecision(numeric_limits
16. << std::scientific << radius<< " area = "
17. << std::setw(10) << setprecision(6)<< std::fixed << pi * radius * radi
18.us << endl;
19. return 0;
20.}
#include
#include
#include
using std::cout;
using std::endl;
using std::setprecision;
using std::numeric_limits;
int main() {
const double pi = 3.14;
cout << endl;
for(double radius = .2 ; radius <= 3.0 ; radius += .2)
cout << "radius = "
<< setprecision(numeric_limits
<< std::scientific << radius<< " area = "
<< std::setw(10) << setprecision(6)<< std::fixed << pi * radius * radi
us << endl;
return 0;
}
radius = 2.0000000000000001e-001 area = 0.125600
radius = 4.0000000000000002e-001 area = 0.502400
radius = 6.0000000000000009e-001 area = 1.130400
radius = 8.0000000000000004e-001 area = 2.009600
radius = 1.0000000000000000e+000 area = 3.140000
radius = 1.2000000000000000e+000 area = 4.521600
radius = 1.3999999999999999e+000 area = 6.154400
radius = 1.5999999999999999e+000 area = 8.038400
radius = 1.7999999999999998e+000 area = 10.173600
radius = 1.9999999999999998e+000 area = 12.560000
radius = 2.1999999999999997e+000 area = 15.197600
radius = 2.3999999999999999e+000 area = 18.086400
radius = 2.6000000000000001e+000 area = 21.226400
radius = 2.8000000000000003e+000 area = 24.617600
view plaincopy to clipboardprint?
01.#include
02.#include
03.#include
04.
05.using namespace std;
06.
07.int main( ) {
08.
09. ios_base::fmtflags flags = cout.flags( );
10.
11. double pi = 3.14285714;
12.
13. cout << "pi = " << setprecision(5) << pi << '\n';
14.
15. cout.flags(flags);
16.}
#include
#include
#include
using namespace std;
int main( ) {
ios_base::fmtflags flags = cout.flags( );
double pi = 3.14285714;
cout << "pi = " << setprecision(5) << pi << '\n';
cout.flags(flags);
}
pi = 3.1429
view plaincopy to clipboardprint?
01.#include
02.#include
03.#include
04.using namespace std;
05.int main()
06.{
07. double root2 = sqrt( 2.0 );
08. int places;
09.
10. cout << setiosflags( ios::fixed)
11. << "Square root of 2 with precisions 0-9.\n"
12. << "Precision set by the "
13. << "precision member function:" << endl;
14.
15. for ( places = 0; places <= 9; places++ ) {
16. cout.precision( places );
17. cout << root2 << '\n';
18. }
19.
20. cout << "\nPrecision set by the "
21. << "setprecision manipulator:\n";
22.
23. for ( places = 0; places <= 9; places++ )
24. cout << setprecision( places ) << root2 << '\n';
25.
26. return 0;
27.}
将 cout 的 flag 保存到变量, 以便修改后的恢复
将 bool 值以 literals 输出
一旦我们使用 boolalpha 将改变 cout 对 bool 值的输出格式. 此后的 cout 都会将 bool 输出为 literals.
将 bool 值以 numeric 输出
从此以后, cout 对 bool 值的输出将恢复 numeric 格式
指定 Integral Values 的 Base
显示表明 Integer Values 的 Base
若想改变16进制字母的大小, 可以结合 uppercase/nouppercase
showbase 与 noshowbase 的作用周期也是 persistent
对于 float/double 型, 有三种格式化控制
一: 输出精度 precision : by default is 6 pricision
控制了至多一共会输出多少个数字.
当要输出的数字多余指定的值时, 将发生 四舍五入(rounded);
当要输出的数字少于指定的值时, 则实际输出的数字个数将少于指定值.
// cout.pricision(4) ; // 等价于 cout <
cout << setprecision( 4 ) << 12.345678 << endl ; // 12.35 rounded!
cout << setprecision( 10 ) << 12.345678 << endl ; // 12.345678 其实内部发生了 rounded, 而结果正好进位, 与原值相同
cout << cout.precision() << endl ; // 输出当前精度
二: 表现形式 notation : 'very large and very small values are printed using scientific notation. other values use fixeddecimal.'
notation 控制了输出的形式 : 科学计数法(scientific) 和 定点小数(fixed)
恢复到初始状态float f = 101 / 6.0 ;
cout << fixed << f << endl ; // 16.83334 : 小数点后共6位
cout << scientific << f << endl ; // 1.683333e+001 : 小数点后共6位
cout.unsetf(ostream::floatfield) ; // Retrieve to default handling for notation
cout << f << endl ; // 16.8333 : 所有数字共6位
三: 输出十进制浮点 'By default, when the fractional part of a floating-point value is 0, the decimal point is not displayed. The showpoint manipulator forces the decimal point ot be printed.'
cout << 10.0 << endl ; // 10
cout << showpoint << 10.0 << endl ; // 10.0000
cout << noshowpoint << endl ; // Revert to default handling of decimal
输出填充 Padding the Output
setw to specify the minimum space for the next numeric or string value.
cout << setw( 10 ) << 12.3 << endl ; // ______12.3
cout << setw( 10 ) << 12 << 3 << endl ; // ________123
cout << setw( 3 ) << 12.345 << endl ; // If the total output is more than 3, it can be extended
left to left-justify the output.
cout << left ; // left-justify
cout << setw( 5 ) << 12 << setw( 5 ) << 34 << endl ; // 12___34___
right to right-justify the output. Output is right-justified bu default.
cout << right ; // By default
cout << setw( 5 ) << 12 << setw( 5 ) << 34 << endl ; // 12___34___
internal controls placement of the sign on negative value. internal left-justifies the sign and right-justifies the value, padding any intervening space with blanks.(if setfill not set)
cout << internal ; // By default
cout << setw( 5 ) <<- 12 << endl ; // 12___34___
setfill lets us specify an alternative character to use when padding the output. By default, the value is a space.
cout << setfill( ' * ' ) ; // By default
cout << setw( 5 ) << 12 << endl ; // 12___34___
Header Files
Manipulators Defined in < iomanip>
setfill( char ch) Fill whitespace with ' ch '
setprecision( int n) Set floating - point precision to ' n '
setw( int w) Read or write value to ' w ' characters
setbase( int b) Output integers in base ' b ' (only ' b ' is 8 / 10 / 16 could the function work)