单链表是否有环

判断单链表里面有没有环

这题目还是蛮有意思的。

题目:0.如何判断单链表里面是否有环?

算法的思想是设定两个指针p, q,其中p每次向前移动一步,q每次向前移动两步。那么如果单链表存在环,则p和q相遇;否则q将首先遇到null。
这里主要理解一个问题,就是为什么当单链表存在环时,p和q一定会相遇呢?


假定单链表的长度为n,并且该单链表是环状的,那么第i次迭代时,p指向元素i mod n,q指向2i mod n。因此当i≡2i(mod n)时,p与q相遇。而i≡2i(mod n) => (2i - i) mod n = 0 => i mod n = 0 => 当i=n时,p与q相遇。这里一个简单的理解是,p和q同时在操场跑步,其中q的速度是p的两倍,当他们两个同时出发时,p跑一圈到达起点,而q此时也刚 好跑完两圈到达起点。
那么当p与q起点不同呢?假定第i次迭代时p指向元素i mod n,q指向k+2i mod n,其中0 (i+k) mod n = 0 => 当i=n-k时,p与q相遇。

解决方案:

推广:

1. 如果两个指针的速度不一样,比如p,q,( 0

Sp(i) = pi

Sq(i) = k + qi

如果两个要相交于一个节点,则 Sp(i) = Sq(i) => (pi) mod n = ( k+ qi ) mod n =>[ (q -p)i + k ] mod n =0

=> (q-p)i + k = Nn [N 为自然数]

=> i = (Nn -k) /(p-q)

i取自然数,则当 p,q满足上面等式 即 存在一个自然数N,可以满足Nn -k 是 p - q 的倍数时,保证两者相交。

特例:如果q 是p 的步长的两倍,都从同一个起点开始,即 q = 2p , k =0, 那么等式变为: Nn=i: 即可以理解为,当第i次迭代时,i是圈的整数倍时,两者都可以交,交点就是为起点。

2.如何判断单链表的环的长度?

这个比较简单,知道q 已经进入到环里,保存该位置(可利用第1问的结论)。然后由该位置遍历,当再次碰到该q 位置即可,所迭代的次数就是环的长度。

3. 如何找到链表中第一个在环里的节点?

假设链表长度是L,前半部分长度为k-1,那么第一个再环里的节点是k,环的长度是 n, 那么当q=2p时, 什么时候第一次相交呢?当p指针走到第k个节点时,q指针已经在环的第 k mod n 的位置。即p和q 相差k个元素,从不同的起点开始,则相交的位置为 n-k, 则有了下面的图:

(待补)

从图上可以明显看到,当p从交点的位置(n-k) ,向前遍历k个节点就到到达环的第一个几点,节点k.

算法就很简单: 一个指针从p和q 中的第一次相交的位置起(n-k),另外一个指针从链表头开始遍历,其交点就是链表中第一个在环里的交点。

4. 如果判断两个单链表有交?第一个交点在哪里?

这个问题画出图,就可以很容易转化为前面的题目。

(待补)

将其中一个链表中的尾节点与头节点联系起来,则很容发现问题转化为问题3,求有环的链表的第一个在环里的节点。

 

你可能感兴趣的:(面试)