Tensorflow:AlexNet的实现(CIFAR-10数据集)

一、模型 

 模型向前向后传播时间的计算请参考:Tensorflow深度学习之十:Tensorflow实现经典卷积神经网络AlexNet

二、工程结构 


由于我自己训练的机器内存显存不足,不能一次性读取10000张图片,因此,在这之前我按照图片的类别,将每一张图片都提取了出来,保存成了jpg格式。与此同时,在保存图片的过程中,存储了一个python的dict结构,键为每一张图片的相对地址,值为每一张图片对应的类别,将这个dict结构保存成npy文件。每一张jpg图片的大小为32*32,而AlexNet需要的输入为224*224,所以在读取图片的时候需要使用cv2.resize进行图片分辨率的调整。

分别对训练集和测试集做以上操作。得到的工程目录如下所示: 


 è¿éåå¾çæè¿°

每个文件和文件夹的作用显示如下:

文件 作用
AlexNet文件夹 保存相关日志的文件夹
cifar-10-python文件夹 保存CIFAR-10数据集的源文件
data\test 测试集数据
data\train 训练集数据,按照标签分成十类,分别存储在0~9的文件夹内,test文件夹也是一样
model文件夹 保存模型的目录
AlexNet.py 建立AlexNet网络结构和训练
AlexNetPrediction.py 使用训练好的模型进行预测
label.npy 保存训练集的文件名与标签的文件,是一个dict
test-label.npy 保存测试集的文件名与标签的文件,是一个dict


三,训练代码

import tensorflow as tf
import numpy as np
import random
import cv2

# 将传入的label转换成one hot的形式。
def getOneHotLabel(label, depth):
    m = np.zeros([len(label), depth])
    for i in range(len(label)):
        m[i][label[i]] = 1
    return m

# 建立神经网络。
def alexnet(image, keepprob=0.5):

    # 定义卷积层1,卷积核大小,偏置量等各项参数参考下面的程序代码,下同。
    with tf.name_scope("conv1") as scope:
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(image, kernel, [1, 4, 4, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[64]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(bias, name=scope)

        pass

    # LRN层
    lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name="lrn1")

    # 最大池化层
    pool1 = tf.nn.max_pool(lrn1, ksize=[1,3,3,1], strides=[1,2,2,1],padding="VALID", name="pool1")

    # 定义卷积层2
    with tf.name_scope("conv2") as scope:
        kernel = tf.Variable(tf.truncated_normal([5,5,64,192], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[192]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope)
        pass

    # LRN层
    lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name="lrn2")

    # 最大池化层
    pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="VALID", name="pool2")

    # 定义卷积层3
    with tf.name_scope("conv3") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,192,384], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[384]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(bias, name=scope)
        pass

    # 定义卷积层4
    with tf.name_scope("conv4") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,384,256], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(bias, name=scope)
        pass

    # 定义卷积层5
    with tf.name_scope("conv5") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,256,256], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(bias, name=scope)
        pass

    # 最大池化层
    pool5 = tf.nn.max_pool(conv5, ksize=[1,3,3,1], strides=[1,2,2,1], padding="VALID", name="pool5")

    # 全连接层
    flatten = tf.reshape(pool5, [-1, 6*6*256])

    weight1 = tf.Variable(tf.truncated_normal([6*6*256, 4096], mean=0, stddev=0.01))

    fc1 = tf.nn.sigmoid(tf.matmul(flatten, weight1))

    dropout1 = tf.nn.dropout(fc1, keepprob)

    weight2 = tf.Variable(tf.truncated_normal([4096, 4096], mean=0, stddev=0.01))

    fc2 = tf.nn.sigmoid(tf.matmul(dropout1, weight2))

    dropout2 = tf.nn.dropout(fc2, keepprob)

    weight3 = tf.Variable(tf.truncated_normal([4096, 10], mean=0, stddev=0.01))

    fc3 = tf.nn.sigmoid(tf.matmul(dropout2, weight3))

    return fc3


def alexnet_main():
    # 加载使用的训练集文件名和标签。
    files = np.load("label.npy", encoding='bytes')[()]

    # 提取文件名。
    keys = [i for i in files]

    print(len(keys))

    myinput = tf.placeholder(dtype=tf.float32, shape=[None, 224, 224, 3], name='input')
    mylabel = tf.placeholder(dtype=tf.float32, shape=[None, 10], name='label')

    # 建立网络,keepprob为0.6。
    myoutput = alexnet(myinput, 0.6)

    # 定义训练的loss函数。
    loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=myoutput, labels=mylabel))

    # 定义优化器,学习率设置为0.09,学习率可以设置为其他的数值。
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.09).minimize(loss)

    # 定义准确率
    valaccuracy = tf.reduce_mean(
        tf.cast(
            tf.equal(
                tf.argmax(myoutput, 1),
                tf.argmax(mylabel, 1)),
            tf.float32))

    # tensorflow的saver,可以用于保存模型。
    saver = tf.train.Saver()
    init = tf.global_variables_initializer()
    with tf.Session() as sess:
        sess.run(init)
        # 40个epoch
        for loop in range(40):

            # 生成并打乱训练集的顺序。
            indices = np.arange(50000)
            random.shuffle(indices)

            # batch size此处定义为200。
            # 训练集一共50000张图片,前40000张用于训练,后10000张用于验证集。
            for i in range(0, 0+40000, 200):
                photo = []
                label = []
                for j in range(0, 200):
                    # print(keys[indices[i + j]])
                    photo.append(cv2.resize(cv2.imread(keys[indices[i + j]]), (224, 224))/225)
                    label.append(files[keys[indices[i + j]]])
                m = getOneHotLabel(label, depth=10)
                a, b = sess.run([optimizer, loss], feed_dict={myinput: photo, mylabel: m})
                print("\r%lf"%b, end='')

            acc = 0
            # 每次取验证集的200张图片进行验证,返回这200张图片的正确率。
            for i in range(40000, 40000+10000, 200):
                photo = []
                label = []
                for j in range(i, i + 200):
                    photo.append(cv2.resize(cv2.imread(keys[indices[j]]), (224, 224))/225)
                    label.append(files[keys[indices[j]]])
                m = getOneHotLabel(label, depth=10)
                acc += sess.run(valaccuracy, feed_dict={myinput: photo, mylabel: m})
            # 输出,一共有50次验证集数据相加,所以需要除以50。
            print("Epoch ", loop, ': validation rate: ', acc/50)
        # 保存模型。
        saver.save(sess, "model/model.ckpt")

if __name__ == '__main__':
    alexnet_main()

以下为结果的部分输出:

50000
1.781297Epoch  0 : validation rate:  0.562699974775
1.775934Epoch  1 : validation rate:  0.547099971175
1.768913Epoch  2 : validation rate:  0.52679997623
1.719084Epoch  3 : validation rate:  0.548099977374
1.721695Epoch  4 : validation rate:  0.562299972177
1.745009Epoch  5 : validation rate:  0.56409997642
1.746290Epoch  6 : validation rate:  0.612299977541
1.726248Epoch  7 : validation rate:  0.574799978137
1.735083Epoch  8 : validation rate:  0.617399973869
1.722523Epoch  9 : validation rate:  0.61839998126
1.712282Epoch  10 : validation rate:  0.643999977112
1.697912Epoch  11 : validation rate:  0.63789998889
1.708088Epoch  12 : validation rate:  0.641699975729
1.716783Epoch  13 : validation rate:  0.64499997735
1.718689Epoch  14 : validation rate:  0.664099971056
1.712452Epoch  15 : validation rate:  0.659299976826
1.699410Epoch  16 : validation rate:  0.666799970865
1.682442Epoch  17 : validation rate:  0.660699977875
1.650028Epoch  18 : validation rate:  0.673199976683
1.662869Epoch  19 : validation rate:  0.692699990273
1.652857Epoch  20 : validation rate:  0.687699975967
1.672175Epoch  21 : validation rate:  0.710799975395
1.662848Epoch  22 : validation rate:  0.707699980736
1.653844Epoch  23 : validation rate:  0.708999979496
1.636483Epoch  24 : validation rate:  0.736199990511
1.658812Epoch  25 : validation rate:  0.688499983549
1.658808Epoch  26 : validation rate:  0.748899987936
1.642705Epoch  27 : validation rate:  0.751199992895
1.609915Epoch  28 : validation rate:  0.742099983692
1.610037Epoch  29 : validation rate:  0.757699984312
1.647516Epoch  30 : validation rate:  0.771899987459
1.615854Epoch  31 : validation rate:  0.762699997425
1.598617Epoch  32 : validation rate:  0.785299996138
1.579349Epoch  33 : validation rate:  0.791699982882
1.615915Epoch  34 : validation rate:  0.780799984932
1.586894Epoch  35 : validation rate:  0.790699990988
1.573043Epoch  36 : validation rate:  0.799299983978
1.580690Epoch  37 : validation rate:  0.812399986982
1.598764Epoch  38 : validation rate:  0.824699985981
1.566866Epoch  39 : validation rate:  0.821999987364

在实际的训练过程中,我进行了多次训练,每次在前一模型的基础上调整学习率继续进行训练。最后的loss值可以下降到1.3~1.4,验证集的正确率可以到0.96~0.97。

四、预测代码 
预测代码:

import tensorflow as tf
import numpy as np
import random
import cv2

def getOneHotLabel(label, depth):
    m = np.zeros([len(label), depth])
    for i in range(len(label)):
        m[i][label[i]] = 1
    return m

# 建立神经网络
def alexnet(image, keepprob=0.5):

    # 定义卷积层1,卷积核大小,偏置量等各项参数参考下面的程序代码,下同
    with tf.name_scope("conv1") as scope:
        kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(image, kernel, [1, 4, 4, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[64]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv1 = tf.nn.relu(bias, name=scope)

        pass

    # LRN层
    lrn1 = tf.nn.lrn(conv1, 4, bias=1.0, alpha=0.001/9, beta=0.75, name="lrn1")

    # 最大池化层
    pool1 = tf.nn.max_pool(lrn1, ksize=[1,3,3,1], strides=[1,2,2,1],padding="VALID", name="pool1")

    # 定义卷积层2
    with tf.name_scope("conv2") as scope:
        kernel = tf.Variable(tf.truncated_normal([5,5,64,192], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[192]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv2 = tf.nn.relu(bias, name=scope)
        pass

    # LRN层
    lrn2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9, beta=0.75, name="lrn2")

    # 最大池化层
    pool2 = tf.nn.max_pool(lrn2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding="VALID", name="pool2")

    # 定义卷积层3
    with tf.name_scope("conv3") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,192,384], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[384]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv3 = tf.nn.relu(bias, name=scope)
        pass

    # 定义卷积层4
    with tf.name_scope("conv4") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,384,256], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv4 = tf.nn.relu(bias, name=scope)
        pass

    # 定义卷积层5
    with tf.name_scope("conv5") as scope:
        kernel = tf.Variable(tf.truncated_normal([3,3,256,256], dtype=tf.float32, stddev=1e-1, name="weights"))
        conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding="SAME")
        biases = tf.Variable(tf.constant(0.0, dtype=tf.float32, shape=[256]), trainable=True, name="biases")
        bias = tf.nn.bias_add(conv, biases)
        conv5 = tf.nn.relu(bias, name=scope)
        pass

    # 最大池化层
    pool5 = tf.nn.max_pool(conv5, ksize=[1,3,3,1], strides=[1,2,2,1], padding="VALID", name="pool5")

    # 全连接层
    flatten = tf.reshape(pool5, [-1, 6*6*256])

    weight1 = tf.Variable(tf.truncated_normal([6*6*256, 4096], mean=0, stddev=0.01))

    fc1 = tf.nn.sigmoid(tf.matmul(flatten, weight1))

    dropout1 = tf.nn.dropout(fc1, keepprob)

    weight2 = tf.Variable(tf.truncated_normal([4096, 4096], mean=0, stddev=0.01))

    fc2 = tf.nn.sigmoid(tf.matmul(dropout1, weight2))

    dropout2 = tf.nn.dropout(fc2, keepprob)

    weight3 = tf.Variable(tf.truncated_normal([4096, 10], mean=0, stddev=0.01))

    fc3 = tf.nn.sigmoid(tf.matmul(dropout2, weight3))

    return fc3


def alexnet_main():
    # 加载测试集的文件名和标签。
    files = np.load("test-label.npy", encoding='bytes')[()]
    keys = [i for i in files]
    print(len(keys))

    myinput = tf.placeholder(dtype=tf.float32, shape=[None, 224, 224, 3], name='input')
    mylabel = tf.placeholder(dtype=tf.float32, shape=[None, 10], name='label')
    myoutput = alexnet(myinput, 0.6)

    prediction = tf.argmax(myoutput, 1)
    truth = tf.argmax(mylabel, 1)
    valaccuracy = tf.reduce_mean(
        tf.cast(
            tf.equal(
                prediction,
                truth),
            tf.float32))

    saver = tf.train.Saver()

    with tf.Session() as sess:
        # 加载训练好的模型,路径根据自己的实际情况调整
        saver.restore(sess, r"model/model.ckpt")

        cnt = 0
        for i in range(10000):
            photo = []
            label = []

            photo.append(cv2.resize(cv2.imread(keys[i]), (224, 224))/225)
            label.append(files[keys[i]])
            m = getOneHotLabel(label, depth=10)
            a, b= sess.run([prediction, truth], feed_dict={myinput: photo, mylabel: m})
            print(a, ' ', b)
            if a[0] == b[0]:
                cnt += 1

        print("Epoch ", 1, ': prediction rate: ', cnt / 10000)

if __name__ == '__main__':
    alexnet_main()

预测结果:(这里只显示部分输出结果)

10000
[3]   [3]
[8]   [8]
[6]   [6]
[4]   [4]
[5]   [9]
[2]   [3]
[9]   [9]
[5]   [5]
[1]   [7]
[3]   [4]
[4]   [4]
[4]   [3]
[9]   [9]
[5]   [5]
[8]   [8]
[3]   [8]
[0]   [0]
[8]   [8]
[7]   [7]
[7]   [4]
[7]   [7]
[5]   [5]
[6]   [5]
...
[7]   [7]
[3]   [3]
[0]   [0]
[7]   [4]
[6]   [2]
[0]   [0]
[7]   [7]
[2]   [5]
[8]   [8]
[5]   [3]
[5]   [5]
[1]   [1]
[7]   [7]
Epoch  1 : prediction rate:  0.7685

五、结果分析 
在测试集的表现上,自己训练的AlexNet网络的预测结果达到了0.7685,即76.85%的正确率。相比较LeNet,这个结果好很多,这是因为在网络结构中,使用了更多的卷积操作,可以提取更多的潜在特征。足以证明AlexNet在CIFAR-10数据集上表现比LeNet好。

但是0.7685的正确率还是不是很让人满意,所以后面可以选择继续调整网络的参数,调整网络的结构等手段继续进行网络的训练,或者可以选择使用预训练好的模型进行自己网络的训练,或者可以尝试使用其他更加优秀的网络结构。

接下来的任务是尝试使用GoogleNet模型进行CIFAR-10数据集的求解。

2018年6月13日更新 
   很多朋友在评论区问我两个npy文件怎么生成的,其实我就是把所有的图片都保存下来,然后把信息提取出来,保存了一下而已。下面是提取信息和保存的代码,非常简单。

import numpy as np
import os


train_label = {}

for i in range(10):
    search_path = './data/train/{}'.format(i)
    file_list = os.listdir(search_path)
    for file in file_list:
        train_label[os.path.join(search_path, file)] = i

np.save('label.npy', train_label)

test_label = {}

for i in range(10):
    search_path = './data/test/{}'.format(i)
    file_list = os.listdir(search_path)
    for file in file_list:
        test_label[os.path.join(search_path, file)] = i

np.save('test-label.npy', test_label)

  如果目录结构和上面的是一样的话,把这些代码文件放在工程的根目录下面就可以运行,也可以根据自己需要调整,目的可以达到就可以了。


------------------------------------------------------------------------------------ 
原文:https://blog.csdn.net/DaVinciL/article/details/78888605 

你可能感兴趣的:(DeepLearning)