前一阵在看yolo v3 keras版本的代码,看完后自己重新训练了一个自己的数据集,但在测试时总觉得不太方便,于是尝试着在代码基础上增加一个可视化界面,可以进行图片的测试和视频的测试,由于是python新手,界面不求美观,但求基础功能能用,下面是最终的界面图:
界面左上部分显示检测的结果图片,右上半部分是选择图片和视频的按钮,其中点击视频检测时,选择mp4文件后,会弹出另一个视频实时检测的界面。
图片检测时,下面每一行显示一个检测结果,单击对应的结果后,图片上会只显示此结果的对应框,如下图:
目前这个代码基本功能可用,因此分享出来,修改的地方主要是修改了yolo_video.py和yolo.py模块。
感兴趣的童鞋可以在下面链接中下载源码(不包括.h5模型库):
https://github.com/markwentian/AI.git
yolo_video.py模块主要是添加界面功能,修改后代码为:
import sys
import argparse
from yolo import YOLO, detect_video
from tkinter import *
from tkinter import ttk
from tkinter import filedialog
from PIL import Image,ImageFont,ImageDraw,ImageTk
import numpy as np
from timeit import default_timer as timer
import time
def detect_img(yolo):
while True:
img = input('Input image filename:')
try:
image = Image.open('./'+img)
except:
print('Open Error! Try again!')
break
else:
r_image = yolo.detect_image(image)
r_image.show()
yolo.close_session()
FLAGS = None
class App:
def __init__(self,master,yolo):
self.master=master
self.initWidgets()
self.yolo=yolo
def initWidgets(self):
topF=Frame(self.master)
topF.pack(side=TOP,fill=BOTH)
self.cv=Canvas(topF,background='white',width=450,height=450)
self.cv.pack(side=LEFT,fill=BOTH,expand=YES)
ttk.Button(topF,text='打开图片文件',command=self.open_file).pack(side=RIGHT,fill=Y,expand=YES,anchor=CENTER)
ttk.Button(topF,text='打开MP4视频文件',command=self.open_video).pack(side=RIGHT,fill=Y,expand=YES,anchor=CENTER)
self.yolo_result=StringVar()
topF3=Frame(self.master)
topF3.pack(side=BOTTOM,fill=BOTH)
ttk.Label(topF3,text='检测结果',padding=20).pack(side=TOP,fill=X,expand=YES)
self.lb=Listbox(topF3,listvariable=self.yolo_result,selectmode='single')
self.lb.pack(side=BOTTOM,fill=X,expand=YES)
self.lb.bind("" ,self.click)
self.yolo_result_store=[]
self.class_names=[]
self.colors=[]
def click(self,event):
index_temp=self.lb.curselection()
index_temp2=index_temp[0]
yolo_result_click=self.yolo_result_store[index_temp2]
wdawdaw=self.yolo_result_store
predicted_class_click=yolo_result_click[0]
score_click=yolo_result_click[1]
box_click=yolo_result_click[2]
thickness_click=yolo_result_click[3]
c_click=yolo_result_click[4]
image_click=self.image.crop()
predicted_class=predicted_class_click
box=box_click
score=score_click
label='{} {:.2f}'.format(predicted_class,score)
draw=ImageDraw.Draw(image_click)
label_size=draw.textsize(label,self.font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(self.image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(self.image.size[0], np.floor(right + 0.5).astype('int32'))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness_click):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c_click])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c_click])
draw.text(text_origin, label, fill=(0, 0, 0), font=self.font)
del draw
image_click=image_click.resize((416,416))
size0=image_click.size[0]
size1=image_click.size[1]
self.cv.bm=ImageTk.PhotoImage(image_click)
self.cv.create_image(size0/2+17,size1/2+17,image=self.cv.bm)
def open_file(self):
self.yolo_result.set('')
self.yolo_result_store.clear()
img=filedialog.askopenfilename(title='打开单个文件',filetypes=[("JPEG图像","*.jpg"),("JPEG图像","*.jpeg"),('PNG图像','*.png')],initialdir='F:/')
print(img)
print(type(img))
try:
self.image=Image.open(img)
except:
print('Open Error! Try again!')
else:
r_image,out_boxes,out_scores,out_classes,self.font,thickness,calculate_time,self.class_names,self.colors = self.yolo.detect_image(self.image)
image_main=self.image.crop()
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image_main)
label_size = draw.textsize(label, self.font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(self.image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(self.image.size[0], np.floor(right + 0.5).astype('int32'))
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=self.font)
del draw
self.yolo_result_store.append((predicted_class,score,box,thickness,c))
self.lb.insert(END,str(predicted_class)+' -->'+' score: '+str(score)+' position: '+str(box))
image_main=image_main.resize((416,416))
size0=image_main.size[0]
size1=image_main.size[1]
self.cv.bm=ImageTk.PhotoImage(image_main)
self.cv.create_image(size0/2+17,size1/2+17,image=self.cv.bm)
def open_video(self):
video_path=filedialog.askopenfilename(title='打开单个文件',filetypes=[("视频文件","*.mp4")],initialdir='F:/')
detect_video(self.yolo,video_path)
def detect_img(self):
while True:
img=input('Input image filename:')
try:
image=Image.open(img)
except:
print('Open Error! Try again!')
continue
else:
r_image = yolo.detect_image(image)
r_image.show()
#self.yolo.close_session()
if __name__ == '__main__':
# class YOLO defines the default value, so suppress any default here
parser = argparse.ArgumentParser(argument_default=argparse.SUPPRESS)
'''
Command line options
'''
parser.add_argument(
'--model', type=str,
help='path to model weight file, default ' + YOLO.get_defaults("model_path")
)
parser.add_argument(
'--anchors', type=str,
help='path to anchor definitions, default ' + YOLO.get_defaults("anchors_path")
)
parser.add_argument(
'--classes', type=str,
help='path to class definitions, default ' + YOLO.get_defaults("classes_path")
)
parser.add_argument(
'--gpu_num', type=int,
help='Number of GPU to use, default ' + str(YOLO.get_defaults("gpu_num"))
)
parser.add_argument(
'--image', default=False, action="store_true",
help='Image detection mode, will ignore all positional arguments'
)
'''
Command line positional arguments -- for video detection mode
'''
parser.add_argument(
"--input", nargs='?', type=str,required=False,default='./path2your_video',
help = "Video input path"
)
parser.add_argument(
"--output", nargs='?', required=False, type=str, default="dayu.avi",
help = "[Optional] Video output path"
)
FLAGS = parser.parse_args()
#if FLAGS.image:
root=Tk()
root.title('YOLO图形识别')
App_inst=App(root,YOLO(**vars(FLAGS)))
root.resizable(width=True,height=True)
root.mainloop()
yolo.py的代码为:
# -*- coding: utf-8 -*-
"""
Class definition of YOLO_v3 style detection model on image and video
"""
import colorsys
import os
from timeit import default_timer as timer
import numpy as np
from keras import backend as K
from keras.models import load_model
from keras.layers import Input
from PIL import Image, ImageFont, ImageDraw
from yolo3.model import yolo_eval, yolo_body, tiny_yolo_body
from yolo3.utils import letterbox_image
import os
from keras.utils import multi_gpu_model
class YOLO(object):
_defaults = {
"model_path": 'model_data/yolo.h5',
"anchors_path": 'model_data/yolo_anchors.txt',
"classes_path": 'model_data/coco_classes.txt',
"score" : 0.3,
"iou" : 0.45,
"model_image_size" : (416, 416),
"gpu_num" : 1,
}
@classmethod
def get_defaults(cls, n):
if n in cls._defaults:
return cls._defaults[n]
else:
return "Unrecognized attribute name '" + n + "'"
def __init__(self, **kwargs):
self.__dict__.update(self._defaults) # set up default values
self.__dict__.update(kwargs) # and update with user overrides
self.class_names = self._get_class()
self.anchors = self._get_anchors()
self.sess = K.get_session()
self.boxes, self.scores, self.classes = self.generate()
self.model_path='model_data/yolo.h5'
self.anchors_path='model_data/yolo_anchors.txt'
self.classes_path='model_data/voc_class.txt'
self.gpu_num=1
self.model_image_size=(416,416)
def _get_class(self):
classes_path = os.path.expanduser(self.classes_path)
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def _get_anchors(self):
anchors_path = os.path.expanduser(self.anchors_path)
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
def generate(self):
model_path = os.path.expanduser(self.model_path)
assert model_path.endswith('.h5'), 'Keras model or weights must be a .h5 file.'
# Load model, or construct model and load weights.
num_anchors = len(self.anchors)
num_classes = len(self.class_names)
is_tiny_version = num_anchors==6 # default setting
try:
self.yolo_model = load_model(model_path, compile=False)
except:
self.yolo_model = tiny_yolo_body(Input(shape=(None,None,3)), num_anchors//2, num_classes) \
if is_tiny_version else yolo_body(Input(shape=(None,None,3)), num_anchors//3, num_classes)
self.yolo_model.load_weights(self.model_path) # make sure model, anchors and classes match
else:
assert self.yolo_model.layers[-1].output_shape[-1] == \
num_anchors/len(self.yolo_model.output) * (num_classes + 5), \
'Mismatch between model and given anchor and class sizes'
print('{} model, anchors, and classes loaded.'.format(model_path))
# Generate colors for drawing bounding boxes.
hsv_tuples = [(x / len(self.class_names), 1., 1.)
for x in range(len(self.class_names))]
self.colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
self.colors = list(
map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)),
self.colors))
np.random.seed(10101) # Fixed seed for consistent colors across runs.
np.random.shuffle(self.colors) # Shuffle colors to decorrelate adjacent classes.
np.random.seed(None) # Reset seed to default.
# Generate output tensor targets for filtered bounding boxes.
self.input_image_shape = K.placeholder(shape=(2, ))
if self.gpu_num>=2:
self.yolo_model = multi_gpu_model(self.yolo_model, gpus=self.gpu_num)
boxes, scores, classes = yolo_eval(self.yolo_model.output, self.anchors,
len(self.class_names), self.input_image_shape,
score_threshold=self.score, iou_threshold=self.iou)
return boxes, scores, classes
def detect_image(self, image):
start = timer()
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
end = timer()
calculate_time=end - start
print(calculate_time)
return image,out_boxes,out_scores,out_classes,font,thickness,calculate_time,self.class_names,self.colors
def close_session(self):
self.sess.close()
def detect_image2(self, image):
start = timer()
if self.model_image_size != (None, None):
assert self.model_image_size[0]%32 == 0, 'Multiples of 32 required'
assert self.model_image_size[1]%32 == 0, 'Multiples of 32 required'
boxed_image = letterbox_image(image, tuple(reversed(self.model_image_size)))
else:
new_image_size = (image.width - (image.width % 32),
image.height - (image.height % 32))
boxed_image = letterbox_image(image, new_image_size)
image_data = np.array(boxed_image, dtype='float32')
print(image_data.shape)
image_data /= 255.
image_data = np.expand_dims(image_data, 0) # Add batch dimension.
out_boxes, out_scores, out_classes = self.sess.run(
[self.boxes, self.scores, self.classes],
feed_dict={
self.yolo_model.input: image_data,
self.input_image_shape: [image.size[1], image.size[0]],
K.learning_phase(): 0
})
print('Found {} boxes for {}'.format(len(out_boxes), 'img'))
font = ImageFont.truetype(font='font/FiraMono-Medium.otf',
size=np.floor(3e-2 * image.size[1] + 0.5).astype('int32'))
thickness = (image.size[0] + image.size[1]) // 300
for i, c in reversed(list(enumerate(out_classes))):
predicted_class = self.class_names[c]
box = out_boxes[i]
score = out_scores[i]
label = '{} {:.2f}'.format(predicted_class, score)
draw = ImageDraw.Draw(image)
label_size = draw.textsize(label, font)
top, left, bottom, right = box
top = max(0, np.floor(top + 0.5).astype('int32'))
left = max(0, np.floor(left + 0.5).astype('int32'))
bottom = min(image.size[1], np.floor(bottom + 0.5).astype('int32'))
right = min(image.size[0], np.floor(right + 0.5).astype('int32'))
print(label, (left, top), (right, bottom))
if top - label_size[1] >= 0:
text_origin = np.array([left, top - label_size[1]])
else:
text_origin = np.array([left, top + 1])
# My kingdom for a good redistributable image drawing library.
for i in range(thickness):
draw.rectangle(
[left + i, top + i, right - i, bottom - i],
outline=self.colors[c])
draw.rectangle(
[tuple(text_origin), tuple(text_origin + label_size)],
fill=self.colors[c])
draw.text(text_origin, label, fill=(0, 0, 0), font=font)
del draw
end = timer()
print(end - start)
return image
def detect_video(yolo, video_path, output_path=""):
import cv2
output_path='./test.mp4'
vid = cv2.VideoCapture(video_path)
if not vid.isOpened():
raise IOError("Couldn't open webcam or video")
video_FourCC = int(vid.get(cv2.CAP_PROP_FOURCC))
video_fps = vid.get(cv2.CAP_PROP_FPS)
video_size = (int(vid.get(cv2.CAP_PROP_FRAME_WIDTH)),
int(vid.get(cv2.CAP_PROP_FRAME_HEIGHT)))
isOutput = True if output_path != "" else False
#if isOutput:
print("!!! TYPE:", type(output_path), type(video_FourCC), type(video_fps), type(video_size))
out = cv2.VideoWriter(output_path, video_FourCC, video_fps, video_size)
accum_time = 0
curr_fps = 0
fps = "FPS: ??"
prev_time = timer()
while True:
return_value, frame = vid.read()
image = Image.fromarray(frame)
image = yolo.detect_image2(image)
result = np.asarray(image)
curr_time = timer()
exec_time = curr_time - prev_time
prev_time = curr_time
accum_time = accum_time + exec_time
curr_fps = curr_fps + 1
if accum_time > 1:
accum_time = accum_time - 1
fps = "FPS: " + str(curr_fps)
curr_fps = 0
cv2.putText(result, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
fontScale=0.50, color=(255, 0, 0), thickness=2)
cv2.namedWindow("result", cv2.WINDOW_NORMAL)
cv2.imshow("result", result)
#if isOutput:
out.write(result)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
#yolo.close_session()