- 《高等数学》(同济大学·第7版)第七章 微分方程 第四节一阶线性微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第四节“一阶线性微分方程”。这是一阶微分方程中最重要、应用最广泛的一类方程,掌握它的解法对后续学习(如微分方程的应用、高阶线性微分方程)至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握“一阶线性微分方程”的定义、解法和核心思想。一、一阶线性微分方程的定义:长什么样?1.标
- 蔡高厅老师 - 高等数学-阅读笔记 - 01 - 前言、函数【视频第01、02、03、】
Franklin
数学线性代数
高等数学前言;196学时,每周6课主要内容:上册一元、多元函数数,微分学、积分学、矢量代数、空间解析几何无穷级数、微分方程,多元函数微分学和积分学目的:高等数学3基:1高等数学的基本知识2高度数学的基本理论3高等数学的基本计算方法提高数学素养培养:抽象思维、逻辑推理、辩证的思想方法、空间想象能力、分析问题、解决问题的能力为进一步学习打下必要的学习基础和初等数学不同,研究的不是常量而是变量,变量和变
- 高等数学》(同济大学·第7版)第七章 微分方程 第五节可降阶的高阶微分方程
没有女朋友的程序员
高等数学
好的,这是将您提供的高等数学第七章第五节教案内容中的LaTeX公式转换为纯文本格式后的版本:同学们好!今天我们学习《高等数学》第七章第五节“可降阶的高阶微分方程”。高阶微分方程(如二阶、三阶)直接求解困难,但许多方程可以通过“降阶”转化为低阶方程(如一阶方程)来求解。本节重点讲解三类可降阶的高阶微分方程,掌握它们的解法对后续学习至关重要。我会用最通俗的语言,结合大量例子,帮你彻底掌握。一、可降阶高
- 高等数学》(同济大学·第7版)第七章 微分方程 第三节齐次方程
没有女朋友的程序员
高等数学
同学们好!今天我们学习《高等数学》第七章第三节“齐次方程”。这是微分方程中一类重要的可转化方程,掌握它的解法对后续学习(如线性微分方程)有重要意义。我会用最通俗的语言,结合大量例子,帮你彻底掌握“齐次方程”的定义、特点和解法。一、齐次方程的定义:什么是“齐次”?1.齐次方程的两种含义在微积分中,“齐次”有两种常见含义,但这里我们特指一阶微分方程中的齐次方程:若一阶微分方程可以写成以下形式:dydx
- 线性代数和c语言先学哪个,线性代数和哪个更有用?
段丞博
线性代数和c语言先学哪个
一、从数学与应用数学这个专业来分析下“线性代数”和“高等数学”这两块的内容,无论哪块知识在“考研究生数学科目中的考试”都会涉汲到的,而且有些专业的考试也包括概率论与数理统计这块知识。线性代数和哪个更有用?1、线性代数内容:行列式、矩阵、向量、线性方程组、特征值和特征向量、二次型。2、高等数学内容:函数·极限·连续、导数与微分、不定积分、定积分及广义积分、中值定理的证明、常微分方程、一元微积分的应用
- 结构力学数值方法:谐波平衡法:高级谐波平衡法技术_2024-08-05_22-46-19.Tex
chenjj4003
材料力学2算法线性代数矩阵决策树人工智能
结构力学数值方法:谐波平衡法:高级谐波平衡法技术绪论谐波平衡法简介谐波平衡法(HarmonicBalanceMethod,HBM)是一种用于求解非线性振动系统周期解的数值方法。它通过将系统的响应表示为一系列谐波函数的线性组合,然后利用傅里叶级数展开,将非线性微分方程转换为一组代数方程,从而简化了求解过程。这种方法特别适用于分析具有周期性激励的非线性系统,如机械振动、电路振荡等。高级谐波平衡法技术的
- Flux Reconstruction(FR,通量重构)方法
东北豆子哥
重构算法人工智能
文章目录FluxReconstruction(FR,通量重构)方法**核心思想****关键步骤****优势****文献推荐****注意事项**FluxReconstruction(FR,通量重构)方法FluxReconstruction(FR,通量重构)方法是一种高阶精度的数值计算框架,主要用于求解偏微分方程(尤其是双曲守恒律方程),在计算流体力学(CFD)等领域有广泛应用。它结合了间断有限元法(
- python scipy简介
凤枭香
Python图像处理pythonscipy开发语言图像处理
scipyscipy是一个python开源的数学计算库,可以应用于数学、科学以及工程领域,它是基于numpy的科学计算库。主要包含了统计学、最优化、线性代数、积分、傅里叶变换、信号处理和图像处理以及常微分方程的求解以及其他科学工程中所用到的计算。scipy模块介绍scipy主要通过下面这些包来实现数学算法和科学计算,后面对于scipy的讲解主要也是基于这些包来实现的cluster:包含聚类算法co
- Python之scipy(算法/数学工具)用法
薛毅轩
python
scipy是一个开源的Python算法库和数学工具包,它基于NumPy,提供了许多用于数学、科学和工程的算法。scipy包含了统计、优化、积分、插值、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解等模块。以下是一些scipy库的基本用法示例:1.特殊函数scipy.special模块提供了许多数学上的特殊函数。fromscipyimportspecial#计算阶乘和组合数factor
- 偏微分方程通解与初值问题求解2
weixin_30777913
算法
题目问题1.(a)求下列各方程的通解:ut+3ux−2uy=0;ut+xux+yuy=0;ut+xux−yuy=0;ut+yux+xuy=0;ut+yux−xuy=0.u_t+3u_x-2u_y=0;\quadu_t+xu_x+yu_y=0;\\u_t+xu_x-yu_y=0;\quadu_t+yu_x+xu_y=0;\\u_t+yu_x-xu_y=0.ut+3ux−2uy=0;ut+xux+yu
- [ 常微分方程 ] 01 ODE积分曲线和方向场可视化(Python)
有梦想的西瓜
数学python
今天老师布置了个一阶线性微分方程的python可视化作业,由于作者本人水平有限(爆哭),之后再把非线性和高阶微分方程学会了再一并补充进来。文章目录一阶微分方程一阶线性微分方程基本概念积分曲线:方向场图:等倾斜线图:例子1:dydx=x2−y\frac{dy}{dx}=x^2-ydxdy=x2−y例子2:dydx=x−y\frac{dy}{dx}=x-ydxdy=x−y一阶微分方程一阶线性微分方程基
- matlab求解常微分方程的实验,实验五 - - 用matlab求解常微分方程
胡千山
实验五用matlab求解常微分方程1.微分方程的概念未知的函数以及它的某些阶的导数连同自变量都由一已知方程联系在一起的方程称为微分方程。如果未知函数是一元函数,称为常微分方程。常微分方程的一般形式为F(t,y,y',y\,?,y(n))?0如果未知函数是多元函数,成为偏微分方程。联系一些未知函数的一组微分方程组称为微分方程组。微分方程中出现的未知函数的导数的最高阶解数称为微分方程的阶。若方程中未知
- matlab方程求解的实验,实验七用matlab求解常微分方程
蔡振原
matlab方程求解的实验
《实验七用matlab求解常微分方程》由会员分享,可在线阅读,更多相关《实验七用matlab求解常微分方程(7页珍藏版)》请在人人文库网上搜索。1、实验七用matlab求解常微分方程一、实验目的:1、熟悉常微分方程的求解方法,了解状态方程的概念;2、能熟练使用dsolve函数求常微分方程(组)的解析解;3、能熟练应用ode45ode15s函数分别求常微分方程的非刚性、刚性的数值解;4、掌握绘制相图
- 基于云计算的振动弦分析:谐波可视化与波动方程参数理解-AI云计算数值分析和代码验证
亚图跨际
AI云计算人工智能
振动弦方程是一个基础的偏微分方程,它描述了弹性弦的横向振动。其应用范围广泛,不仅可用于模拟乐器和一般的波动现象,更是数学物理以及深奥的弦理论中的重要基石。☁️AI云计算数值分析和代码验证振动弦方程是描述固定两端弹性弦横向振动的基本偏微分方程(PDE),其典型表达式为:∂2u∂t2=c2∂2u∂x2\frac{\partial^2u}{\partialt^2}=c^2\frac{\partial^2
- Python实例题:使用Python 解数学方程
狐凄
实例python开发语言
目录Python实例题题目1.解代数方程(如一元二次方程)2.使用SymPy解符号方程3.使用NumPy解线性方程组4.使用SciPy解非线性方程5.解微分方程总结Python实例题题目使用Python解数学方程1.解代数方程(如一元二次方程)对于简单的代数方程,可以直接使用求根公式:importmathdefsolve_quadratic(a,b,c):"""解一元二次方程ax²+bx+c=0"
- 《高等数学 第7版(同济大学 上册).pdf》资源介绍
孟津葵Gilda
《高等数学第7版(同济大学上册).pdf》资源介绍【下载地址】高等数学第7版同济大学上册.pdf资源介绍本资源提供《高等数学第7版(同济大学上册)》电子书,内容涵盖函数与极限、导数与微分、微分方程等核心章节,适合工科和理科学生系统学习。书中包含详细的理论讲解、丰富实例及习题答案,帮助读者深入理解高等数学知识。章节划分清晰,便于查找和学习。资源仅供学习研究使用,请合理利用,尊重知识产权。项目地址:h
- 振动力学:弹性杆的纵向振动(固有振动和固有频率的概念)
Wang的王
经典力学笔记笔记
文章1、2、3中讨论的是离散系统的振动特性,然而实际系统的惯性质量、弹性、阻尼等特性都是连续分布的,因而成为连续系统或分布参数系统。确定连续介质中无数个点的运动需要无限个广义坐标,因此也称为无限自由度系统,典型的结构例如:弦、杆、膜、环、梁、板、壳等,也称为弹性体。弹性体的微振动通常由偏微分方程描述。本文研究弹性杆的纵向振动特性。1.弹性杆纵向振动方程1.1振动方程某一直杆长为lll,沿杆件的轴线
- COMSOL Multiphysics软件二次开发:COMSOL软件在固体力学中的应用
kkchenjj
仿真模拟工业软件仿真模拟工业软件二次开发开发语言
COMSOLMultiphysics软件二次开发:COMSOL软件在固体力学中的应用COMSOLMultiphysics概述COMSOLMultiphysics是一款强大的多物理场仿真软件,它允许用户通过数值方法求解偏微分方程,从而模拟各种物理现象。软件的核心功能在于其灵活的建模环境和多物理场耦合能力,使得用户能够在一个统一的界面下,对涉及多种物理场的复杂问题进行仿真和分析。特点与应用多物理场耦合
- MATLAB实战:传染病模型仿真实现
三三十二
matlab开发语言
以下是一个使用MATLAB实现传染病模型(SIR和SEIR)仿真的完整解决方案,包含参数分析和干预措施模拟:%%传染病模型仿真工具箱%包含SIR、SEIR模型,支持参数调整和干预措施模拟%使用ode45求解微分方程functionepidemic_modeling()%主控制界面fig=uifigure('Name','传染病模型仿真','Position',[100100800600]);%模型
- 二阶线性微分方程的通解与特解
debug_running_Hu
线性代数算法机器学习学习
二阶线性微分方程的通解与特解二阶线性微分方程的一般形式为:a(x)y′′+b(x)y′+c(x)y=f(x)a(x)y''+b(x)y'+c(x)y=f(x)a(x)y′′+b(x)y′+c(x)y=f(x)其中,a(x),b(x),c(x)为系数函数,f(x)为非齐次项。1.齐次方程(f(x)=0):当f(x)=0时,方程变为齐次方程:a(x)y′′+b(x)y′+c(x)y=0a(x)y''+
- 泛函分析基础11-线性算子的谱1:谱的概念
u013250861
泛函分析基础泛函分析
谱论是泛函分析的重要分支之一.线性代数告诉我们:有限维空间上的线性算子由它的特征值和最小多项式完全确定.将这一结论推广到有界线性算子的情况,研究它的结构,就是算子的谱理论所谓算子的"谱",类似于有限维空间上算子—一矩阵的特征值.而无限维空间上的算子谱论,也就相当于把矩阵化为若尔当标准形.由于特征值和逆算子有密切关系,谱论也大量涉及逆算子的问题.将算子求逆应用到微分算子和积分算子上,推动了微分方程和
- matlab解高阶非齐次方程并作图,2x2齐次线性方程组作图
阿橘要努力上清华
主题:不同于一般常微分方程课程千篇一律地从分离变量和一阶线性方程讲起,MIT《微分方程》第一讲就以独特的视角从全局的角度诠释了微分方程的内涵。课程从方向场和积分曲线入手,深入透彻地剖析了微分方程的实质。一上来,撇开那些有解的特殊的微分方程不谈,却从几何方向通俗易懂,而又全面深入地告诉我们什么是微分方程,解微分方程其实是什么。主题:老头爽约了,他没有按之前说的,讲线性方程的解法,而是开始讲数值方法。
- MATLAB简介(附电子书学习资料)
hweiyu00
分享matlab开发语言
MATLAB简介MATLAB(MatrixLaboratory)是由MathWorks公司开发的一款高性能数值计算和可视化编程语言及交互式环境,广泛应用于工程、科学、金融等领域。电子书资料:https://pan.quark.cn/s/02f3324bc7f3主要功能数值计算矩阵和向量运算线性代数、微积分、微分方程求解统计分析和优化算法数据可视化2D/3D绘图(曲线、曲面、散点图等)动态可视化(动
- 多模态大模型训练困境:当神经辐射场遭遇物理约束的深度博弈
尘烬海
人工智能golang开发语言
一、物理约束的本质性对抗:流形嵌入的维度诅咒在NeRF的隐式场景表示中,物理约束的引入本质上是将高维连续流形嵌入到低维物理参数空间。这种嵌入导致两个关键矛盾:微分几何冲突:物理规律通常由偏微分方程(PDE)描述,其解空间维度远低于NeRF的隐式参数空间。当训练过程中强制约束时,参数梯度场在流形切空间产生投影失真。李群对称性破坏:刚体运动等物理过程构成SE(3)李群,而NeRF的MLP网络无法保持该
- PINN高阶技术综合应用:复杂问题求解与神经算子进阶
LIUDAN'S WORLD
python人工智能算法深度学习
本文深入探讨物理信息神经网络(PINNs)在处理复杂工程问题中的高阶技术应用。重点关注高维偏微分方程、强非线性系统、奇异性问题的求解策略,反问题中的参数识别与系统辨识方法,以及基于问题特性的网络架构优化设计。此外,本文详细介绍了神经算子理论及其在学习解算子中的创新应用,为PINN技术的工程实践提供了系统性的高级解决方案。关键词:高阶PINN技术、反问题求解、网络架构优化、神经算子、复杂系统建模1.
- 信号与系统(15)- 系统的频域分析法:周期信号
Zhongzheng Wang
信号与系统信号处理
系统的频域分析法,是通过傅里叶变换将信号分解为多个正弦函数之和或者积分,由此得到信号的频谱。接着对各个正弦分量求系统对其的响应,进而得到系统对各个分量响应的频谱,最后将各个分量的响应叠加,再求傅里叶反变换,求得最终响应的分析方法。相比时域分析法,这种方法不需要求解微分方程,以及使用卷积积分计算系统对信号的响应,但是必须要经过傅里叶变换和傅里叶反变换。这种分析方法只能求解零状态响应或稳态响应,零输入
- 信号与系统06-系统建模与AI融合
江畔柳前堤
信号与系统人工智能机器学习架构数据库学习pyqtpython
第6课:系统建模与AI融合课程目标掌握传统系统建模方法(微分方程/差分方程/状态空间)理解动态系统的数学本质与AI建模的共性掌握深度学习中处理时序数据的核心模型(RNN/LSTM)通过代码实践理解系统建模与AI建模的衔接1.传统系统建模方法1.1微分方程建模核心思想:用导数关系描述系统动态特性典型应用:电路分析、机械振动、控制系统示例:RLC电路微分方程Ld2i(t)dt2+Rdi(t)dt+1C
- 基于matlabcd7.x的无网格近似方法
feifeigo123
算法
无网格近似方法(MeshlessMethods)是一类数值计算方法,用于解决偏微分方程(PDEs)问题,特别是在几何形状复杂或需要动态网格更新的场景中。与传统的有限元方法(FEM)相比,无网格方法不需要预先划分网格,而是直接在离散点上进行计算,这使得它在处理大变形、裂纹扩展等问题时具有显著优势。MATLABCD7.x(可能是指某个特定的MATLAB工具箱或版本)可能提供了无网格方法的相关功能。基于
- MATLAB学习笔记(六):MATLAB数学建模
向上的车轮
MATLAB数学建模matlab学习数学软件
MATLAB是数学建模的强大工具,其丰富的函数库和可视化能力可以高效解决各类数学建模问题。以下是MATLAB数学建模的完整指南,涵盖建模流程、常用方法、代码示例及实际应用。一、数学建模的基本流程问题分析•明确目标(预测、优化、分类等)•确定变量与约束条件•选择数学模型类型(连续/离散、确定性/随机性)。模型构建•建立数学方程(微分方程、代数方程、统计模型等)。•确定参数与初始条件。模型求解•解析解
- 数学建模之入门篇
沐硕
计算机专业基础数学建模软件工程
目录什么是数学建模建模、编程、写作一、初步建模选择模型二、进阶熟练掌握1.数学模型线性规划图与网络模型及方法插值与拟合灰色预测动态规划层次分析法AHP整数规划目标规划模型偏最小二乘回归微分方程模型博弈论/对策论排队论模型存储论模糊数学模型2.统计模型3.机器学习/数据挖掘模型4.深度学习模型三.模型求解与优化一、团队篇,组建你的团队二、工具篇,提高你的效率三、建模篇,怎么建模三、零碎的知识点篇如何
- apache ftpserver-CentOS config
gengzg
apache
<server xmlns="http://mina.apache.org/ftpserver/spring/v1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="
http://mina.apache.o
- 优化MySQL数据库性能的八种方法
AILIKES
sqlmysql
1、选取最适用的字段属性 MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的 性能,我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用VARCHAR这种类型也是多余的,因为CHAR(6)就可以很
- JeeSite 企业信息化快速开发平台
Kai_Ge
JeeSite
JeeSite 企业信息化快速开发平台
平台简介
JeeSite是基于多个优秀的开源项目,高度整合封装而成的高效,高性能,强安全性的开源Java EE快速开发平台。
JeeSite本身是以Spring Framework为核心容器,Spring MVC为模型视图控制器,MyBatis为数据访问层, Apache Shiro为权限授权层,Ehcahe对常用数据进行缓存,Activit为工作流
- 通过Spring Mail Api发送邮件
120153216
邮件main
原文地址:http://www.open-open.com/lib/view/open1346857871615.html
使用Java Mail API来发送邮件也很容易实现,但是最近公司一个同事封装的邮件API实在让我无法接受,于是便打算改用Spring Mail API来发送邮件,顺便记录下这篇文章。 【Spring Mail API】
Spring Mail API都在org.spri
- Pysvn 程序员使用指南
2002wmj
SVN
源文件:http://ju.outofmemory.cn/entry/35762
这是一篇关于pysvn模块的指南.
完整和详细的API请参考 http://pysvn.tigris.org/docs/pysvn_prog_ref.html.
pysvn是操作Subversion版本控制的Python接口模块. 这个API接口可以管理一个工作副本, 查询档案库, 和同步两个.
该
- 在SQLSERVER中查找被阻塞和正在被阻塞的SQL
357029540
SQL Server
SELECT R.session_id AS BlockedSessionID ,
S.session_id AS BlockingSessionID ,
Q1.text AS Block
- Intent 常用的用法备忘
7454103
.netandroidGoogleBlogF#
Intent
应该算是Android中特有的东西。你可以在Intent中指定程序 要执行的动作(比如:view,edit,dial),以及程序执行到该动作时所需要的资料 。都指定好后,只要调用startActivity(),Android系统 会自动寻找最符合你指定要求的应用 程序,并执行该程序。
下面列出几种Intent 的用法
显示网页:
- Spring定时器时间配置
adminjun
spring时间配置定时器
红圈中的值由6个数字组成,中间用空格分隔。第一个数字表示定时任务执行时间的秒,第二个数字表示分钟,第三个数字表示小时,后面三个数字表示日,月,年,< xmlnamespace prefix ="o" ns ="urn:schemas-microsoft-com:office:office" />
测试的时候,由于是每天定时执行,所以后面三个数
- POJ 2421 Constructing Roads 最小生成树
aijuans
最小生成树
来源:http://poj.org/problem?id=2421
题意:还是给你n个点,然后求最小生成树。特殊之处在于有一些点之间已经连上了边。
思路:对于已经有边的点,特殊标记一下,加边的时候把这些边的权值赋值为0即可。这样就可以既保证这些边一定存在,又保证了所求的结果正确。
代码:
#include <iostream>
#include <cstdio>
- 重构笔记——提取方法(Extract Method)
ayaoxinchao
java重构提炼函数局部变量提取方法
提取方法(Extract Method)是最常用的重构手法之一。当看到一个方法过长或者方法很难让人理解其意图的时候,这时候就可以用提取方法这种重构手法。
下面是我学习这个重构手法的笔记:
提取方法看起来好像仅仅是将被提取方法中的一段代码,放到目标方法中。其实,当方法足够复杂的时候,提取方法也会变得复杂。当然,如果提取方法这种重构手法无法进行时,就可能需要选择其他
- 为UILabel添加点击事件
bewithme
UILabel
默认情况下UILabel是不支持点击事件的,网上查了查居然没有一个是完整的答案,现在我提供一个完整的代码。
UILabel *l = [[UILabel alloc] initWithFrame:CGRectMake(60, 0, listV.frame.size.width - 60, listV.frame.size.height)]
- NoSQL数据库之Redis数据库管理(PHP-REDIS实例)
bijian1013
redis数据库NoSQL
一.redis.php
<?php
//实例化
$redis = new Redis();
//连接服务器
$redis->connect("localhost");
//授权
$redis->auth("lamplijie");
//相关操
- SecureCRT使用备注
bingyingao
secureCRT每页行数
SecureCRT日志和卷屏行数设置
一、使用securecrt时,设置自动日志记录功能。
1、在C:\Program Files\SecureCRT\下新建一个文件夹(也就是你的CRT可执行文件的路径),命名为Logs;
2、点击Options -> Global Options -> Default Session -> Edite Default Sett
- 【Scala九】Scala核心三:泛型
bit1129
scala
泛型类
package spark.examples.scala.generics
class GenericClass[K, V](val k: K, val v: V) {
def print() {
println(k + "," + v)
}
}
object GenericClass {
def main(args: Arr
- 素数与音乐
bookjovi
素数数学haskell
由于一直在看haskell,不可避免的接触到了很多数学知识,其中数论最多,如素数,斐波那契数列等,很多在学生时代无法理解的数学现在似乎也能领悟到那么一点。
闲暇之余,从图书馆找了<<The music of primes>>和<<世界数学通史>>读了几遍。其中素数的音乐这本书与软件界熟知的&l
- Java-Collections Framework学习与总结-IdentityHashMap
BrokenDreams
Collections
这篇总结一下java.util.IdentityHashMap。从类名上可以猜到,这个类本质应该还是一个散列表,只是前面有Identity修饰,是一种特殊的HashMap。
简单的说,IdentityHashMap和HashM
- 读《研磨设计模式》-代码笔记-享元模式-Flyweight
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java
- PS人像润饰&调色教程集锦
cherishLC
PS
1、仿制图章沿轮廓润饰——柔化图像,凸显轮廓
http://www.howzhi.com/course/retouching/
新建一个透明图层,使用仿制图章不断Alt+鼠标左键选点,设置透明度为21%,大小为修饰区域的1/3左右(比如胳膊宽度的1/3),再沿纹理方向(比如胳膊方向)进行修饰。
所有修饰完成后,对该润饰图层添加噪声,噪声大小应该和
- 更新多个字段的UPDATE语句
crabdave
update
更新多个字段的UPDATE语句
update tableA a
set (a.v1, a.v2, a.v3, a.v4) = --使用括号确定更新的字段范围
- hive实例讲解实现in和not in子句
daizj
hivenot inin
本文转自:http://www.cnblogs.com/ggjucheng/archive/2013/01/03/2842855.html
当前hive不支持 in或not in 中包含查询子句的语法,所以只能通过left join实现。
假设有一个登陆表login(当天登陆记录,只有一个uid),和一个用户注册表regusers(当天注册用户,字段只有一个uid),这两个表都包含
- 一道24点的10+种非人类解法(2,3,10,10)
dsjt
算法
这是人类算24点的方法?!!!
事件缘由:今天晚上突然看到一条24点状态,当时惊为天人,这NM叫人啊?以下是那条状态
朱明西 : 24点,算2 3 10 10,我LX炮狗等面对四张牌痛不欲生,结果跑跑同学扫了一眼说,算出来了,2的10次方减10的3次方。。我草这是人类的算24点啊。。
然后么。。。我就在深夜很得瑟的问室友求室友算
刚出完题,文哥的暴走之旅开始了
5秒后
- 关于YII的菜单插件 CMenu和面包末breadcrumbs路径管理插件的一些使用问题
dcj3sjt126com
yiiframework
在使用 YIi的路径管理工具时,发现了一个问题。 <?php  
- 对象与关系之间的矛盾:“阻抗失配”效应[转]
come_for_dream
对象
概述
“阻抗失配”这一词组通常用来描述面向对象应用向传统的关系数据库(RDBMS)存放数据时所遇到的数据表述不一致问题。C++程序员已经被这个问题困扰了好多年,而现在的Java程序员和其它面向对象开发人员也对这个问题深感头痛。
“阻抗失配”产生的原因是因为对象模型与关系模型之间缺乏固有的亲合力。“阻抗失配”所带来的问题包括:类的层次关系必须绑定为关系模式(将对象
- 学习编程那点事
gcq511120594
编程互联网
一年前的夏天,我还在纠结要不要改行,要不要去学php?能学到真本事吗?改行能成功吗?太多的问题,我终于不顾一切,下定决心,辞去了工作,来到传说中的帝都。老师给的乘车方式还算有效,很顺利的就到了学校,赶巧了,正好学校搬到了新校区。先安顿了下来,过了个轻松的周末,第一次到帝都,逛逛吧!
接下来的周一,是我噩梦的开始,学习内容对我这个零基础的人来说,除了勉强完成老师布置的作业外,我已经没有时间和精力去
- Reverse Linked List II
hcx2013
list
Reverse a linked list from position m to n. Do it in-place and in one-pass.
For example:Given 1->2->3->4->5->NULL, m = 2 and n = 4,
return 
- Spring4.1新特性——页面自动化测试框架Spring MVC Test HtmlUnit简介
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- Hadoop集群工具distcp
liyonghui160com
1. 环境描述
两个集群:rock 和 stone
rock无kerberos权限认证,stone有要求认证。
1. 从rock复制到stone,采用hdfs
Hadoop distcp -i hdfs://rock-nn:8020/user/cxz/input hdfs://stone-nn:8020/user/cxz/运行在rock端,即源端问题:报版本
- 一个备份MySQL数据库的简单Shell脚本
pda158
mysql脚本
主脚本(用于备份mysql数据库): 该Shell脚本可以自动备份
数据库。只要复制粘贴本脚本到文本编辑器中,输入数据库用户名、密码以及数据库名即可。我备份数据库使用的是mysqlump 命令。后面会对每行脚本命令进行说明。
1. 分别建立目录“backup”和“oldbackup” #mkdir /backup #mkdir /oldbackup
- 300个涵盖IT各方面的免费资源(中)——设计与编码篇
shoothao
IT资源图标库图片库色彩板字体
A. 免费的设计资源
Freebbble:来自于Dribbble的免费的高质量作品。
Dribbble:Dribbble上“免费”的搜索结果——这是巨大的宝藏。
Graphic Burger:每个像素点都做得很细的绝佳的设计资源。
Pixel Buddha:免费和优质资源的专业社区。
Premium Pixels:为那些有创意的人提供免费的素材。
- thrift总结 - 跨语言服务开发
uule
thrift
官网
官网JAVA例子
thrift入门介绍
IBM-Apache Thrift - 可伸缩的跨语言服务开发框架
Thrift入门及Java实例演示
thrift的使用介绍
RPC
POM:
<dependency>
<groupId>org.apache.thrift</groupId>