Apollo5.5规划代码分析(4)-frenet和cartesian坐标转换

#pragma once

#include 

#include "modules/common/math/vec2d.h"

namespace apollo {
namespace common {
namespace math {

// Notations:
// s_condition = [s, s_dot, s_ddot]
// s: longitudinal coordinate w.r.t reference line.
// s_dot: ds / dt
// s_ddot: d(s_dot) / dt
// d_condition = [d, d_prime, d_pprime]
// d: lateral coordinate w.r.t. reference line
// d_prime: dd / ds
// d_pprime: d(d_prime) / ds
// l: the same as d.
class CartesianFrenetConverter {
 public:
  CartesianFrenetConverter() = delete;
  /**
   * Convert a vehicle state in Cartesian frame to Frenet frame.
   * Decouple a 2d movement to two independent 1d movement w.r.t. reference
   * line.
   * The lateral movement is a function of longitudinal accumulated distance s
   * to achieve better satisfaction of nonholonomic constraints.
   */
  static void cartesian_to_frenet(const double rs, const double rx,
                                  const double ry, const double rtheta,
                                  const double rkappa, const double rdkappa,
                                  const double x, const double y,
                                  const double v, const double a,
                                  const double theta, const double kappa,
                                  std::array<double, 3>* const ptr_s_condition,
                                  std::array<double, 3>* const ptr_d_condition);

  static void cartesian_to_frenet(const double rs, const double rx,
                                  const double ry, const double rtheta,
                                  const double x, const double y, double* ptr_s,
                                  double* ptr_d);

  /**
   * Convert a vehicle state in Frenet frame to Cartesian frame.
   * Combine two independent 1d movement w.r.t. reference line to a 2d movement.
   */
  static void frenet_to_cartesian(const double rs, const double rx,
                                  const double ry, const double rtheta,
                                  const double rkappa, const double rdkappa,
                                  const std::array<double, 3>& s_condition,
                                  const std::array<double, 3>& d_condition,
                                  double* const ptr_x, double* const ptr_y,
                                  double* const ptr_theta,
                                  double* const ptr_kappa, double* const ptr_v,
                                  double* const ptr_a);

  // given sl point extract x, y, theta, kappa
  static double CalculateTheta(const double rtheta, const double rkappa,
                               const double l, const double dl);

  static double CalculateKappa(const double rkappa, const double rdkappa,
                               const double l, const double dl,
                               const double ddl);

  static Vec2d CalculateCartesianPoint(const double rtheta, const Vec2d& rpoint,
                                       const double l);
  /**
   * @brief: given sl, theta, and road's theta, kappa, extract derivative l,
   *second order derivative l:
   */
  static double CalculateLateralDerivative(const double theta_ref,
                                           const double theta, const double l,
                                           const double kappa_ref);

  // given sl, theta, and road's theta, kappa, extract second order derivative
  static double CalculateSecondOrderLateralDerivative(
      const double theta_ref, const double theta, const double kappa_ref,
      const double kappa, const double dkappa_ref, const double l);
};

}  // namespace math
}  // namespace common
}  // namespace apollo

CartesianFrenetConverter::cartesian_to_frenet

void CartesianFrenetConverter::cartesian_to_frenet(
    const double rs, const double rx, const double ry, const double rtheta,
    const double rkappa, const double rdkappa, const double x, const double y,
    const double v, const double a, const double theta, const double kappa,
    std::array<double, 3>* const ptr_s_condition,
    std::array<double, 3>* const ptr_d_condition) {
  const double dx = x - rx;
  const double dy = y - ry;

  const double cos_theta_r = std::cos(rtheta);
  const double sin_theta_r = std::sin(rtheta);

  const double cross_rd_nd = cos_theta_r * dy - sin_theta_r * dx;
  ptr_d_condition->at(0) =
      std::copysign(std::sqrt(dx * dx + dy * dy), cross_rd_nd);

  const double delta_theta = theta - rtheta;
  const double tan_delta_theta = std::tan(delta_theta);
  const double cos_delta_theta = std::cos(delta_theta);

  const double one_minus_kappa_r_d = 1 - rkappa * ptr_d_condition->at(0);
  ptr_d_condition->at(1) = one_minus_kappa_r_d * tan_delta_theta;

  const double kappa_r_d_prime =
      rdkappa * ptr_d_condition->at(0) + rkappa * ptr_d_condition->at(1);

  ptr_d_condition->at(2) =
      -kappa_r_d_prime * tan_delta_theta +
      one_minus_kappa_r_d / cos_delta_theta / cos_delta_theta *
          (kappa * one_minus_kappa_r_d / cos_delta_theta - rkappa);

  ptr_s_condition->at(0) = rs;

  ptr_s_condition->at(1) = v * cos_delta_theta / one_minus_kappa_r_d;

  const double delta_theta_prime =
      one_minus_kappa_r_d / cos_delta_theta * kappa - rkappa;
  ptr_s_condition->at(2) =
      (a * cos_delta_theta -
       ptr_s_condition->at(1) * ptr_s_condition->at(1) *
           (ptr_d_condition->at(1) * delta_theta_prime - kappa_r_d_prime)) /
      one_minus_kappa_r_d;
}

void CartesianFrenetConverter::cartesian_to_frenet(
    const double rs, const double rx, const double ry, const double rtheta,
    const double x, const double y, double* ptr_s, double* ptr_d) {
  const double dx = x - rx;
  const double dy = y - ry;

  const double cos_theta_r = std::cos(rtheta);
  const double sin_theta_r = std::sin(rtheta);

  const double cross_rd_nd = cos_theta_r * dy - sin_theta_r * dx;
  *ptr_d = std::copysign(std::sqrt(dx * dx + dy * dy), cross_rd_nd);
  *ptr_s = rs;
}
void CartesianFrenetConverter::frenet_to_cartesian(
    const double rs, const double rx, const double ry, const double rtheta,
    const double rkappa, const double rdkappa,
    const std::array<double, 3>& s_condition,
    const std::array<double, 3>& d_condition, double* const ptr_x,
    double* const ptr_y, double* const ptr_theta, double* const ptr_kappa,
    double* const ptr_v, double* const ptr_a) {
  CHECK(std::abs(rs - s_condition[0]) < 1.0e-6)
      << "The reference point s and s_condition[0] don't match";

  const double cos_theta_r = std::cos(rtheta);
  const double sin_theta_r = std::sin(rtheta);

  *ptr_x = rx - sin_theta_r * d_condition[0];
  *ptr_y = ry + cos_theta_r * d_condition[0];

  const double one_minus_kappa_r_d = 1 - rkappa * d_condition[0];

  const double tan_delta_theta = d_condition[1] / one_minus_kappa_r_d;
  const double delta_theta = std::atan2(d_condition[1], one_minus_kappa_r_d);
  const double cos_delta_theta = std::cos(delta_theta);

  *ptr_theta = NormalizeAngle(delta_theta + rtheta);

  const double kappa_r_d_prime =
      rdkappa * d_condition[0] + rkappa * d_condition[1];
  *ptr_kappa = (((d_condition[2] + kappa_r_d_prime * tan_delta_theta) *
                 cos_delta_theta * cos_delta_theta) /
                    (one_minus_kappa_r_d) +
                rkappa) *
               cos_delta_theta / (one_minus_kappa_r_d);

  const double d_dot = d_condition[1] * s_condition[1];
  *ptr_v = std::sqrt(one_minus_kappa_r_d * one_minus_kappa_r_d *
                         s_condition[1] * s_condition[1] +
                     d_dot * d_dot);

  const double delta_theta_prime =
      one_minus_kappa_r_d / cos_delta_theta * (*ptr_kappa) - rkappa;

  *ptr_a = s_condition[2] * one_minus_kappa_r_d / cos_delta_theta +
           s_condition[1] * s_condition[1] / cos_delta_theta *
               (d_condition[1] * delta_theta_prime - kappa_r_d_prime);
}

double CartesianFrenetConverter::CalculateTheta(const double rtheta,
                                                const double rkappa,
                                                const double l,
                                                const double dl) {
  return NormalizeAngle(rtheta + std::atan2(dl, 1 - l * rkappa));
}

double CartesianFrenetConverter::CalculateKappa(const double rkappa,
                                                const double rdkappa,
                                                const double l, const double dl,
                                                const double ddl) {
  double denominator = (dl * dl + (1 - l * rkappa) * (1 - l * rkappa));
  if (std::fabs(denominator) < 1e-8) {
    return 0.0;
  }
  denominator = std::pow(denominator, 1.5);
  const double numerator = rkappa + ddl - 2 * l * rkappa * rkappa -
                           l * ddl * rkappa + l * l * rkappa * rkappa * rkappa +
                           l * dl * rdkappa + 2 * dl * dl * rkappa;
  return numerator / denominator;
}

Vec2d CartesianFrenetConverter::CalculateCartesianPoint(const double rtheta,
                                                        const Vec2d& rpoint,
                                                        const double l) {
  const double x = rpoint.x() - l * std::sin(rtheta);
  const double y = rpoint.y() + l * std::cos(rtheta);
  return Vec2d(x, y);
}

double CartesianFrenetConverter::CalculateLateralDerivative(
    const double rtheta, const double theta, const double l,
    const double rkappa) {
  return (1 - rkappa * l) * std::tan(theta - rtheta);
}

double CartesianFrenetConverter::CalculateSecondOrderLateralDerivative(
    const double rtheta, const double theta, const double rkappa,
    const double kappa, const double rdkappa, const double l) {
  const double dl = CalculateLateralDerivative(rtheta, theta, l, rkappa);
  const double theta_diff = theta - rtheta;
  const double cos_theta_diff = std::cos(theta_diff);
  const double res = -(rdkappa * l + rkappa * dl) * std::tan(theta - rtheta) +
                     (1 - rkappa * l) / (cos_theta_diff * cos_theta_diff) *
                         (kappa * (1 - rkappa * l) / cos_theta_diff - rkappa);
  if (std::isinf(res)) {
    AWARN << "result is inf when calculate second order lateral "
             "derivative. input values are rtheta:"
          << rtheta << " theta: " << theta << ", rkappa: " << rkappa
          << ", kappa: " << kappa << ", rdkappa: " << rdkappa << ", l: " << l
          << std::endl;
  }
  return res;
}
/////////////////////////////////////////////////////////////////
// The start_s and end_s are longitudinal values.
// start_s <= end_s.
//
//              end_s
//                ^
//                |
//          S  direction
//                |
//            start_s
//
// The start_l and end_l are lateral values.
// start_l <= end_l. Left side of the reference line is positive,
// and right side of the reference line is negative.
//  end_l  <-----L direction---- start_l
/////////////////////////////////////////////////////////////////
message SLBoundary {
  optional double start_s = 1;
  optional double end_s = 2;
  optional double start_l = 3;
  optional double end_l = 4;
  repeated apollo.common.SLPoint boundary_point = 5;
}

message FrenetFramePoint {
  optional double s = 1;
  optional double l = 2;
  optional double dl = 3;
  optional double ddl = 4;
}

message SLPoint {
  optional double s = 1;
  optional double l = 2;
}

你可能感兴趣的:(Unmanned,vehicle)