Pytorch入门实战-----ResNet识别CIFAR-10数据集

跑了一个epoch,正确率为:

Pytorch入门实战-----ResNet识别CIFAR-10数据集_第1张图片

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable

#Image Preprocessing
transform = transforms.Compose([
    transforms.Scale(40),
    transforms.RandomHorizontalFlip(),
    transforms.RandomCrop(32),
    transforms.ToTensor()
])

#CIFAR-10 Dataset
train_dataset = dsets.CIFAR10(
    root='./data',
    train=True,
    transform = transform,
    download=True
)
test_dataset = dsets.CIFAR10(
    root='./data',
    train=False,
    transform = transform,
    download=True
)
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
                                           batch_size=50,
                                           shuffle=True)

test_loader = torch.utils.data.DataLoader(dataset=test_dataset,
                                          batch_size=50,
                                          shuffle=False)
#3*3 Convolution
def con3x3(in_channels,out_channels,stride=1):
    return nn.Conv2d(in_channels,out_channels,kernel_size=3,
                     stride=stride,padding=1,bias=False)

#Residual Block
class ResidualBlock(nn.Module):
    def __init__(self,in_channels,out_channels,stride=1,downsample=None):
        super(ResidualBlock,self).__init__()
        self.conv1 = con3x3(in_channels,out_channels,stride)
        self.bn1 = nn.BatchNorm2d(out_channels)
        self.relu = nn.ReLU(inplace=True)
        #inplace=True计算结果不会有影响,利用inplace计算可以节省内存,
        #同时还可以省去反复申请和释放内存的时间;但是会对原变量进行覆盖。
        self.conv2 = con3x3(out_channels,out_channels)
        self.bn2 = nn.BatchNorm2d(out_channels)
        self.downsample = downsample

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)
        out = self.conv2(out)
        out = self.bn2(out)
        if self.downsample:#计算残差
            residual = self.downsample(x)
        out += residual
        out = self.relu(out)

        return out

#ResNet Model
class ResNet(nn.Module):
    def __init__(self,block,layers,num_classes=10):
        super(ResNet, self).__init__()
        self.in_channels = 16
        self.conv = con3x3(3,16)
        self.bn = nn.BatchNorm2d(16)
        self.relu = nn.ReLU(inplace=True)
        self.layer1 = self.make_layer(block,16,layers[0])
        self.layer2 = self.make_layer(block,32,layers[0],2)
        self.layer3 = self.make_layer(block,64,layers[1],2)
        self.avg_pool = nn.AvgPool2d(8)
        self.fc = nn.Linear(64,num_classes)

    def make_layer(self,block,out_channels,blocks,stride=1):
        downsample = None
        if (stride != 1) or (self.in_channels != out_channels):
            downsample = nn.Sequential(
                con3x3(self.in_channels,out_channels,stride=stride),
                nn.BatchNorm2d(out_channels)
            )
        layers = []
        layers.append(block(self.in_channels,out_channels,stride,downsample))
        self.in_channels = out_channels
        for i in range(1,blocks):
            layers.append(block(out_channels,out_channels))

        return nn.Sequential(*layers)

    def forward(self, x):
        out = self.conv(x)
        out = self.bn(out)
        out = self.relu(out)
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.avg_pool(out)
        out = out.view(out.size(0), -1)
        out = self.fc(out)

        return out

resnet = ResNet(ResidualBlock, [2, 2, 2, 2])
# Loss and Optimizer
criterion = nn.CrossEntropyLoss()
lr = 0.001
optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)

# Training
for epoch in range(1):
    for i, (images, labels) in enumerate(train_loader):
        images = Variable(images)
        labels = Variable(labels)

        # Forward + Backward + Optimize
        optimizer.zero_grad()
        outputs = resnet(images)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        if (i+1)%1 == 0:
            print("Epoch [%d/%d], Iter [%d/%d] Loss: %.4f" % (epoch+1,1,i+1,len(train_loader),loss.item()))

#Decaying Learning Rate
    if (epoch + 1) % 2 == 0:
        lr /= 3
        optimizer = torch.optim.Adam(resnet.parameters(), lr=lr)

# Test
correct = 0
total = 0
for images, labels in test_loader:
    images = Variable(images)
    outputs = resnet(images)
    _, predicted = torch.max(outputs.data, 1)
    total += labels.size(0)
    correct += (predicted == labels).sum()

print('Accuracy of the model on the test images: %d %%' % (100 * correct / total))

# Save the Model
torch.save(resnet.state_dict(), 'resnet.pkl')

 

你可能感兴趣的:(Pytroch实战)