机器学习5 高斯判别法

如果
y ~ Bernoulli(ϕ)
x|y=1 ~ N(μ0,Σ)
x|y=0 ~ N(μ1,Σ)

p(y)=ϕy(1ϕ)1y
p(x|y=1)=1(2π)n2|Σ|12exp(12(xμ0)TΣ1(xμ0))=(1(2π)n2|Σ|12exp(12(xμ0)TΣ1(xμ0)))y
p(x|y=0)=1(2π)n2|Σ|12exp(12(xμ1)TΣ1(xμ1))=(1(2π)n2|Σ|12exp(12(xμ1)TΣ1(xμ1)))1y
l(ϕ,μ0,μ1,Σ)=logi=1mp(x(i),y(i);ϕ,μ0,μ1,Σ)
=logi=1mp(x(i)|y(i);μ0,μ1,Σ)p(y(i);ϕ)
=logi=1m(1(2π)n2|Σ|12exp(12(x(i)μ0)TΣ1(x(i)μ0))ϕ)y(i)(1(2π)n2|Σ|12exp(12(x(i)μ1)TΣ1(x(i)μ1))(1ϕ))1y(i)
=i=1my(i)log(1(2π)n2|Σ|12exp(12(x(i)μ0)TΣ1(x(i)μ0))ϕ)+(1y(i))log(1(2π)n2|Σ|12exp(12(x(i)μ1)TΣ1(x(i)μ1))(1ϕ))
=i=1my(i)(12(x(i)μ0)TΣ1(x(i)μ0)+log(1(2π)n2|Σ|12)+log(ϕ))+(1y(i))(12(x(i)μ1)TΣ1(x(i)μ1)+log(1(2π)n2|Σ|12)+log(1ϕ))
=i=1mlog(1(2π)n2|Σ|12)+log(1ϕ)+y(i)(log(ϕ)log(1ϕ))+y(i)(12(x(i)μ0)TΣ1(x(i)μ0))+(1y(i))(12(x(i)μ1)TΣ1(x(i)μ1))

lϕ=i=1m11ϕ+y(i)(1ϕ(1ϕ))
=i=1m11ϕ(1+y(i)1ϕ)
=11ϕm+i=1m(y(i))ϕ==0
ϕ=i=1m(y(i))m
先证
d=(AB)TC(AB)
Bd=Btr(d)=Btr(ATCBBTCA+BTCB)=(CTACA+CB+CTB)
fC==CTBd=2CB2CA

lμ0=i=1my(i)Σ1(μ0+x(i))=Σ1(i=1my(i)x(i)i=1my(i)μ0)μ0=i=1my(i)x(i)i=1my(i)lμ1=i=1m(1y(i))Σ1(μ1+x(i))μ1=i=1m(1y(i))x(i)i=1m(1y(i))

Σ1l=i=1m12Σ1Σ1Σ1+y(i)(12(x(i)μ0)(x(i)μ0)T)+(1y(i))(12(x(i)μ1)(x(i)μ1)T)=mΣ2+i=1my(i)(12(x(i)μ0)(x(i)μ0)T)+(1y(i))(12(x(i)μ1)(x(i)μ1)T)Σ=i=1my(i)(12(x(i)μ0)(x(i)μ0)T)+(1y(i))(12(x(i)μ1)(x(i)μ1)T)m

你可能感兴趣的:(机器学习5 高斯判别法)