Pytorch目标检测学习资源

Pytorch学习

陈云《深度学习框架PyTorch:入门与实践》:https://zhuanlan.zhihu.com/p/31712507

官方教程:http://pytorch123.com/

动手学深度学习:https://zhuanlan.zhihu.com/p/85353963

其他开源资料:

https://github.com/zergtant/pytorch-handbook

https://github.com/TingsongYu/PyTorch_Tutorial

PyTorch官方出品了一本深度学习书

https://zhuanlan.zhihu.com/p/93116220

计算模型计算量参数量工具

https://github.com/sksq96/pytorch-summary

https://github.com/Swall0w/torchstat

https://github.com/Lyken17/pytorch-OpCounter

https://github.com/sovrasov/flops-counter.pytorch

SSD系列优秀项目推荐:

RFBNet: 
code: https://github.com/ruinmessi/RFBNet
代码详解:https://zhuanlan.zhihu.com/p/49615407
SSD:
code: 
https://link.zhihu.com/?target=https%3A//github.com/lufficc/SSD
https://github.com/dlyldxwl/Stronger-One-stage-detector-with-much-Tricks
代码详解:https://zhuanlan.zhihu.com/p/62725380

【SSD算法】史上最全代码解析-核心篇 - JimmyHua的文章  https://zhuanlan.zhihu.com/p/79854543

【SSD算法】史上最全代码解析-核心篇 - JimmyHua的文章  https://zhuanlan.zhihu.com/p/79854543
M2Det: https://github.com/qijiezhao/M2Det
FSSD: https://github.com/lzx1413/PytorchSSD
RefineDet: 
https://github.com/lzx1413/PytorchSSD
https://github.com/pengfeidip/refindeDet_Pytorch

CVPR2019的一篇文章,也是改进的SSD,主要解决的还是尺度变化以及提高小目标上的表现,同时速度还是很快。改进点还是蛮有意思的,通过图像金字塔生成了特征金字塔与SSD本身的特征金字塔进行各种融合

标题:Efficient Featurized Image Pyramid Network for Single Shot Detector

代码:https://github.com/vaesl/LFIP

目标检测 EFGRNet:用于目标检测的丰富的功能导向优化网络

《Enriched Feature Guided Refinement Network for Object Detection》ICCV2019

注:EFGRNet是基于SSD魔改的Single-Stage检测网络,在COCO上可达46ms/39.0mAP(512x512),现已开源!

作者:天津大学&IIAI

论文标题:Enriched Feature Guided Refinement Network for Object Detection

论文代码:https://github.com/Ranchentx/EFGRNet

 

YOLO项目推荐: 

1. https://github.com/eriklindernoren/PyTorch-YOLOv3(代码简洁,适合学习,效果不太好)
2. https://github.com/ultralytics/yolov3(实现效果更好,适合应用)
3. YOLO剪枝:

https://github.com/tanluren/yolov3-channel-and-layer-pruning
https://github.com/zbyuan/pruning_yolov3

https://github.com/coldlarry/YOLOv3-complete-pruning

4.YOLO tricks pytorch:

https://github.com/ruinmessi/ASFF

https://github.com/Peterisfar/YOLOV3
https://github.com/wlguan/Stronger-yolo-pytorch


5. anchor聚类: https://github.com/lars76/kmeans-anchor-boxes

6. 超详细的Pytorch版yolov3代码中文注释详解(一)https://zhuanlan.zhihu.com/p/49981816

多目标跟踪:

1. centerNet + deep sort with pytorch
https://github.com/kimyoon-young/centerNet-deep-sort
2. YOLOv3+ deep sort with pytorch
https://github.com/ZQPei/deep_sort_pytorch

数据增广通用库:

https://github.com/albu/albumentations
https://github.com/aleju/imgaug
https://github.com/mdbloice/Augmentor
很好的文章:
https://blog.paperspace.com/data-augmentation-for-bounding-boxes/

【SSD算法】史上最全代码解析-数据篇 - JimmyHua的文章 - 知乎 
https://zhuanlan.zhihu.com/p/79933177

https://nicehuster.github.io/2019/05/11/ssd-dataaug/
开源算法:
快速自动数据增广:https://github.com/kakaobrain/fast-autoaugment
PSIS:https://github.com/Hwang64/PSIS
小目标数据增广:https://github.com/gmayday1997/SmallObjectAugmentation

其他资源

高效轻量级语义分割网络汇总:https://github.com/xiaoyufenfei/Efficient-Segmentation-Networks

实时/轻量级的语义分割论文大全 注:含30多篇轻量级网络论文和40篇实时语义分割论文!:https://github.com/wpf535236337/real-time-network

大小仅1MB,超轻量级通用人脸检测模型登上GitHub趋势榜:https://zhuanlan.zhihu.com/p/86620263

AutoML 和轻量级网络资源大全(含NAS、模型压缩、超参优化和特征工程等):

https://github.com/guan-yuan/awesome-AutoML-and-Lightweight-Models

科普帖:深度学习中GPU和显存分析:https://zhuanlan.zhihu.com/p/31558973

云深不知处-目标检测 763679865

群友们的优秀资源分享:

群友的优秀资料(持续更新,欢迎大家分享自己的文章和代码,一起交流):
漂:YOLOv3剪枝的改进 https://github.com/tanluren/YOLOv3-extreme-pruning

https://github.com/tanluren/yolov3-channel-and-layer-pruning
行云:Pytorch 版YOLOV3训练自己的数据集https://blog.csdn.net/qq_34795071/article/details/90769094
yw: anchor free 人脸检测 https://github.com/Star-Clouds/centerface
DTennant: 多GPU和SyncBN的reID Baseline: https://github.com/DTennant/reid_baseline_with_syncbn

有点'冷:提供对YOLOv3及Tiny的多种剪枝版本,以适应不同的需求 https://github.com/coldlarry/YOLOv3-complete-pruning

你可能感兴趣的:(目标检测,目标检测,Pytorch)