Java字节码揭秘——第一部分 收藏

http://blog.csdn.net/BU_BetterYou/archive/2008/06/16/2553108.aspx

Java字节码揭秘——第一部分 收藏
 
写在前面
这一两年,在JVM上使用其他替代语言越来越热门了。现在至少有三门语言有幸在Java Community Process中得到了官方认可:JRuby、Groovy和Bean-Shell。另外,代号为野马(Mustang)的Java 6发布了包含了一个专为封装不同脚本引擎的API层,就像JDBC访问数据库的模式一样。再加上Java版本5也在语言本身上做了很大的调整。总之,就像我之前翻译的一篇BLOG一样,Java平台的编程语言的前景已经发生了巨大的改变。虽然如此,只有一样东西没有变,它是所有这些语言的基础,无论这些语言有多么吸引人的特性和功能,最终都会在JVM的混合语言中运行,即JVM字节码。这又提起了我在JVM/Java字节码方面的兴趣。所以书写本文,在其中将介绍JVM字节码集合,用一些代码来描述它的工作方式,也将介绍一些可以直接操纵字节码的工具。
 
首先我要说明的是,直接了解JVM字节码感觉是奇怪的事情,因为我们总不可能自己来书写字节码。但是,我们如果知道编译器干了些什么可能会更好一点。比如,你肯定想知道编译后的StringBuffer和String的区别、编译器到底有没有给你加上默认构造函数……当你了解了JVM字节码——这是我看见过的最简单的“可装配语言”——你就能够验证你的这些假设是否正确。
 
 
分解Java
考虑到大家对Java都已经比较熟悉了,所以我们这样开始可能比较容易:我们从编译后的Java代码开始,然后对其进行分解。这样可能比一开始就直接讲述Java字节码的规则要好一些。我们先从最简单的Hello World程序开始。
 
public class HelloWorld{        public static void main(String[] args)        {               System.out.println("Hello, world!");        }}
我们通过两种方式来一起研究Java字节码。第一个是太久时间都没有见到过的javap。javap是字节码分解器,意思就是它编译.class文件并将文件结构输出到控制台,其中包括组成方法的字节码。如下例:
 
$ javap -verbose -c -private HelloWorldCompiled from "HelloWorld.java"public class HelloWorld extends java.lang.Object        SourceFile: "HelloWorld.java"        minor version: 0        major version: 50        Constant pool:const #1 = Method #6.#15; // java/lang/Object."":()Vconst #2 = Field #16.#17; // java/lang/System.out:Ljava/io/PrintStream;const #3 = String #18; // Hello, world!const #4 = Method #19.#20; // java/io/PrintStream.println:(Ljava/lang/String;)Vconst #5 = class #21; // HelloWorldconst #6 = class #22; // java/lang/Objectconst #7 = Asciz ;const #8 = Asciz ()V;const #9 = Asciz Code;const #10 = Asciz LineNumberTable;const #11 = Asciz main;const #12 = Asciz ([Ljava/lang/String;)V;const #13 = Asciz SourceFile;const #14 = Asciz HelloWorld.java;const #15 = NameAndType #7:#8;// "":()Vconst #16 = class #23; // java/lang/Systemconst #17 = NameAndType #24:#25;// out:Ljava/io/PrintStream;const #18 = Asciz Hello, world!;const #19 = class #26; // java/io/PrintStreamconst #20 = NameAndType #27:#28;// println:(Ljava/lang/String;)Vconst #21 = Asciz HelloWorld;const #22 = Asciz java/lang/Object;const #23 = Asciz java/lang/System;const #24 = Asciz out;const #25 = Asciz Ljava/io/PrintStream;;const #26 = Asciz java/io/PrintStream;const #27 = Asciz println;const #28 = Asciz (Ljava/lang/String;)V; {public HelloWorld();        Code:               Stack=1, Locals=1, Args_size=1               0: aload_0               1: invokespecial #1; //Method java/lang/Object."":()V               4: return         LineNumberTable:               line 1: 0 public static void main(java.lang.String[]);        Code:               Stack=2, Locals=1, Args_size=1               0: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;               3: ldc #3; //String Hello, world!               5: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V               8: return        LineNumberTable:               line 5: 0               line 6: 8}
 
在刚才讲述的.class文件实际并不准确,JVM无所谓输入的二进制流从哪儿来,只不过因为我们的习惯和JDK 1.0的发布所以我们说成是.class文件。所以,所谓的“.class文件”应该被理解为符合JVM标准的二进制格式流。
 
上面我们使用了javap。其中,-c指示需要显示方法字节码;-private指示无论可访问性显示所有成员;-verbose是需要显示类的常量池。检查HelloWorld分解后的内容,会觉得非常有趣,我们立马就可以验证一些假设。例如,第一,如果类没有显式声明其父类的话,它将继承于java.lang.Object。第二,javap也验证了如果类中没有显式声明构造函数的话,编译器会插入一个缺省无参的构造函数(构造函数在JVM级别是显示成的普通函数)。
 
加上了-verbose选项的javap输出中一个重要的部分就是常量池。每个类都会有个常量池,所有的常量——比如字符串、类名、方法名、属性名——都是保存在类的中心位置,通过对该池的索引进行参照访问。通常,这些特殊的细节内容都是由工具来处理的,这也是javap通过注释来显示这些常量值的原因。但是这些内容对我们认识常量池非常有用,也能够简化我们对分解代码的理解。例如,第5行代码System.out.println("Hello, world!");它调用了println方法,显示在常量池的编号为4的分片(const #4),它依次由编号为19的分片和编号为20的分片组成(const #4 = Method #19.#20;),这样就最终解决了java.io.PrintStream.println(String[])的问题。你可以参照JVM标准来了解所有不同的常量类型以及他们在.class文件中的格式。
 
在这里,我们主要来分析自动生成的HelloWorld构造函数:
 
public HelloWorld();        Code:               Stack=1, Locals=1, Args_size=1               0: aload_0               1: invokespecial #1; //Method java/lang/Object."":()V               4: return        LineNumberTable:               line 1: 0
在JVM中,所有字节码都是通过一个基本的原则来进行堆栈操作的:每个操作符可能会消费一个或多个操作计数,并可能最后将一个操作计数推送到执行堆栈。需要注意的是,每个分片(slot)都是32位的,这就意味着long或者是double的值会消耗两个分片(slot)(很多人认为这个是JVM实现中的最大缺憾)。另外,每个方法都会有一个本地的结合,本地变量和参数都在此保存。因此,例如“aload_0”指示符将第一个参数带入方法,并将其推送至执行堆栈。“invokespecial”指示符,不言而喻,它将调用实例的方法,但是忽略传统的动态绑定(因为我们显示调用基类版本的覆盖方法,该特殊的操作符用在父“super”调用)。因为Object的构造函数需要一个参数(this指针),所以它将消耗执行堆栈中的一个分片(记住,这是我们刚才推送的参数——this指针,指向我们自己的实例的this指针),而且它不返回任何值(最后有一个V字),当方法返回时它将不往堆栈内推送任何内容。此时,HelloWorld的构造函数已完成任务,所以它通过“return”操作符进行简单返回。
 
我们接下来在看看写在HelloWorld里面的主方法(main):
 
public static void main(java.lang.String[]);        Code:               Stack=2, Locals=1, Args_size=1               0: getstatic #2; //Field java/lang/System.out:Ljava/io/PrintStream;               3: ldc #3; //String Hello, world!               5: invokevirtual #4; //Method java/io/PrintStream.println:(Ljava/lang/String;)V               8: return        LineNumberTable:               line 5: 0               line 6: 8
因为它是静态方法,所以最显著的区别就是第一个参数并不是this指针,除此之外,它和HelloWorld的构造函数看起来都差不多。第一个操作符“getstatic”将获取一个static区域并将其值推送至堆栈中,在本例中是System.out的引用,由#2常量池分片描述,并在操作符后使用注释显示。接下来,就对字符串“Hello, World!”进行加载,它在#3常量池分片中存储。通过堆栈上的两个引用,我们就可以调用“invokevirtual”PrintStream.println(String[])方法了。因其需要一个参数,再加上调用该方法需要的初始this引用,我们刚才推送至堆栈的这两项就被消费了,println(String[])不返回任何值,所以完成后堆栈上就为空了。一个简单的“return”操作符中止了该方法,任务完成了。
 
后面的内容会比现在的复杂一些,但总的来说,了解Java字节码的重要部分是需要了解每个操作符是如何操作执行堆栈的。
未完待续……
参考资料下载:
The Java Virtual Machine Specification(2nd Edition) JVM规范(第二版)


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/BU_BetterYou/archive/2008/06/16/2553108.aspx

你可能感兴趣的:(Java字节码揭秘——第一部分 收藏)