Ignatius and the Princess I (hdu 1026 优先队列+bfs+输出路径)

Ignatius and the Princess I

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14624    Accepted Submission(s): 4634
Special Judge


Problem Description
The Princess has been abducted by the BEelzebub feng5166, our hero Ignatius has to rescue our pretty Princess. Now he gets into feng5166's castle. The castle is a large labyrinth. To make the problem simply, we assume the labyrinth is a N*M two-dimensional array which left-top corner is (0,0) and right-bottom corner is (N-1,M-1). Ignatius enters at (0,0), and the door to feng5166's room is at (N-1,M-1), that is our target. There are some monsters in the castle, if Ignatius meet them, he has to kill them. Here is some rules:

1.Ignatius can only move in four directions(up, down, left, right), one step per second. A step is defined as follow: if current position is (x,y), after a step, Ignatius can only stand on (x-1,y), (x+1,y), (x,y-1) or (x,y+1).
2.The array is marked with some characters and numbers. We define them like this:
. : The place where Ignatius can walk on.
X : The place is a trap, Ignatius should not walk on it.
n : Here is a monster with n HP(1<=n<=9), if Ignatius walk on it, it takes him n seconds to kill the monster.

Your task is to give out the path which costs minimum seconds for Ignatius to reach target position. You may assume that the start position and the target position will never be a trap, and there will never be a monster at the start position.
 

Input
The input contains several test cases. Each test case starts with a line contains two numbers N and M(2<=N<=100,2<=M<=100) which indicate the size of the labyrinth. Then a N*M two-dimensional array follows, which describe the whole labyrinth. The input is terminated by the end of file. More details in the Sample Input.
 

Output
For each test case, you should output "God please help our poor hero." if Ignatius can't reach the target position, or you should output "It takes n seconds to reach the target position, let me show you the way."(n is the minimum seconds), and tell our hero the whole path. Output a line contains "FINISH" after each test case. If there are more than one path, any one is OK in this problem. More details in the Sample Output.
 

Sample Input
 
   
5 6 .XX.1. ..X.2. 2...X. ...XX. XXXXX. 5 6 .XX.1. ..X.2. 2...X. ...XX. XXXXX1 5 6 .XX... ..XX1. 2...X. ...XX. XXXXX.
 

Sample Output
 
   
It takes 13 seconds to reach the target position, let me show you the way. 1s:(0,0)->(1,0) 2s:(1,0)->(1,1) 3s:(1,1)->(2,1) 4s:(2,1)->(2,2) 5s:(2,2)->(2,3) 6s:(2,3)->(1,3) 7s:(1,3)->(1,4) 8s:FIGHT AT (1,4) 9s:FIGHT AT (1,4) 10s:(1,4)->(1,5) 11s:(1,5)->(2,5) 12s:(2,5)->(3,5) 13s:(3,5)->(4,5) FINISH It takes 14 seconds to reach the target position, let me show you the way. 1s:(0,0)->(1,0) 2s:(1,0)->(1,1) 3s:(1,1)->(2,1) 4s:(2,1)->(2,2) 5s:(2,2)->(2,3) 6s:(2,3)->(1,3) 7s:(1,3)->(1,4) 8s:FIGHT AT (1,4) 9s:FIGHT AT (1,4) 10s:(1,4)->(1,5) 11s:(1,5)->(2,5) 12s:(2,5)->(3,5) 13s:(3,5)->(4,5) 14s:FIGHT AT (4,5) FINISH God please help our poor hero. FINISH
 

Author
Ignatius.L
 

Recommend
We have carefully selected several similar problems for you:   1072  1175  1180  1240  1241 


题意:给出n*m的地图,求从(0,0)走到(n-1,m-1)最短时间,方格上的数字表示杀怪所要的时间。

思路:优先队列+bfs,输出路径的时候用一个path数组记录,path[i][j]=d表示(i,j)位置是由d方向过来的。

代码:

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#pragma comment (linker,"/STACK:102400000,102400000")
#define pi acos(-1.0)
#define eps 1e-6
#define lson rt<<1,l,mid
#define rson rt<<1|1,mid+1,r
#define FRE(i,a,b)  for(i = a; i <= b; i++)
#define FREE(i,a,b) for(i = a; i >= b; i--)
#define FRL(i,a,b)  for(i = a; i < b; i++)
#define FRLL(i,a,b) for(i = a; i > b; i--)
#define mem(t, v)   memset ((t) , v, sizeof(t))
#define sf(n)       scanf("%d", &n)
#define sff(a,b)    scanf("%d %d", &a, &b)
#define sfff(a,b,c) scanf("%d %d %d", &a, &b, &c)
#define pf          printf
#define DBG         pf("Hi\n")
typedef long long ll;
using namespace std;

#define INF 0x3f3f3f3f
#define mod 1000000009
const int maxn = 105;
const int MAXN = 2005;
const int MAXM = 200010;
const int N = 1005;

struct Node
{
    int x,y,step;
    bool operator<(const Node &a)const
    {
        return step>a.step;
    }
};

int n,m,cnt;
int dir[4][2]={1,0,0,1,0,-1,-1,0};
char mp[maxn][maxn];
int vis[maxn][maxn];
int path[maxn][maxn];

bool isok(int x,int y)
{
    if (x>=0&&x=0&&y(%d,%d)\n",cnt++,dx,dy,x,y);
}

int bfs()
{
    Node st,now;
    mem(path,-1);
    mem(vis,0);
    st.x=st.y=st.step=0;
    vis[0][0]=1;
    priority_queueQ;
    Q.push(st);
    while (!Q.empty())
    {
        st=Q.top();
        Q.pop();
        if (st.x==n-1&&st.y==m-1)
            return st.step;
        for (int i=0;i<4;i++)
        {
            now.x=st.x+dir[i][0];
            now.y=st.y+dir[i][1];
            if (isok(now.x,now.y)&&!vis[now.x][now.y])
            {
                vis[now.x][now.y]=1;
                now.step=st.step+1;
                if (isdigit(mp[now.x][now.y])) now.step=now.step+mp[now.x][now.y]-'0';
                path[now.x][now.y]=i;
                Q.push(now);
            }
        }
    }
    return 0;
}

int main()
{
#ifndef ONLINE_JUDGE
    freopen("C:/Users/lyf/Desktop/IN.txt","r",stdin);
#endif
    int i,j;
    while (~scanf("%d%d",&n,&m))
    {
        for (i=0;i



你可能感兴趣的:(搜索,ACM)