- 2025年的RAG技术发展趋势与演进
码农Q!
云计算人工智能aiagi自然语言处理语言模型
本文将分享作为大模型应用创业者的经历与观察,讨论RAG技术和市场环境在2024年的变化。一、RAG技术的演进RAG(检索增强生成)由“检索”和“大模型生成”两部分组成,而检索之前的索引创建(如chunking、embedding等)是核心基础。我们早在2021年便通过Java技术栈实现了RAG的“RA”部分。2023年中,RAG概念突然走红,并迅速在企业应用中显示出更强的实用性。1.主流架构的变化
- 超越RAG的搜索革命!分层框架让AI像专家团队一样深度思考
Python_金钱豹
人工智能深度学习网络知识图谱大数据
❝一句话概括:与其训练一个越来越大的“六边形战士”AI,不如组建一个各有所长的“复仇者联盟”,这篇论文就是那本“联盟组建手册”。(原论文题目见文末,点击阅读原文可直接跳转至原文链接,Publishedonarxivon03Jul2025,byRenminUniversityofChina)*第一阶段:核心思想概览**论文的动机*在面对“未来的家庭娱乐会是什么样?”或“结合最新的财报和市场趋势,分析
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(Advanced RAG[1])MultiQuery retriever详解?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1])MultiQueryretriever详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十六章(AdvancedRAG[1]
- Dify小白入门指南:通过官方文档学习工作流编排和API调用
伟大无须多言
学习difyai
Dify小白入门指南:通过官方文档学习工作流编排和API调用一、Dify平台简介与核心功能Dify是一个开源的LLM应用开发平台,被设计为一个"生成式AI应用创新引擎",它提供了从Agent构建到AI工作流编排、RAG检索、模型管理等全方位能力,帮助用户轻松构建和运营生成式AI原生应用。作为一个强大的LLMOps平台,Dify已成为众多开发者构建AI应用的首选工具,尤其适合想要快速开发AI应用但缺
- OpenWebUI(11)源码学习-后端config.py配置文件
青苔猿猿
AI大模型openwebui学习env环境变量配置
目录文件名:`config.py`功能概述:主要功能点详解1.**初始化和数据库迁移**2.**数据库配置与持久化配置管理**✅SQLAlchemy模型类`Config`✅PersistentConfig类3.**OAuth登录配置**4.**用户权限与功能控制**5.**RAG(Retrieval-AugmentedGeneration)配置**6.**图像生成配置**7.**代码解释器配置**
- 【RAG实战指南 Day 13】嵌入模型选择与性能对比
在未来等你
Java场景面试宝典RAG嵌入模型语义搜索信息检索向量数据库
【RAG实战指南Day13】嵌入模型选择与性能对比文章内容开篇欢迎来到"RAG实战指南"系列的第13天!今天我们聚焦RAG系统中的关键组件——嵌入模型。嵌入模型的质量直接影响检索效果,进而决定整个RAG系统的性能。在信息检索过程中,嵌入模型将文本转换为向量表示,其质量决定了语义搜索的准确性和召回率。本文将深入分析主流嵌入模型的技术特点、性能表现和适用场景,帮助您在项目中做出最优选择。通过本文,您将
- Spring AI 本地 RAG 实战:用Redis、Chroma搭建离线知识问答系统
勤奋的知更鸟
JavaAI大模型AI工具spring人工智能RAG
本文将用Ollama+Qwen-7B搭建离线知识问答系统(含Redis/Chroma向量库)目录前言环境搭建项目结构设计Maven依赖pom.xmlapplication.yml配置(Redis+Ollama)Redis向量库实战OllamaConfig.javaRagService.javaRagController.javaRagApplication.java测试样例RAG增强Maven依赖
- 【GitHub开源项目实战】LLM-Cookbook 中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践
GitHub开源实战|LLM-Cookbook中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践关键词LLM-Cookbook,中文大模型,Datawhale,大模型实战,LangChain应用,多模态集成,RAG系统,国产模型适配,大模型微调,开源实战解析摘要LLM-Cookbook是由Datawhale社区发起并持续维护的中文大模型应用工程实践项目,旨在系统性总结大模型在中文语境下
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- 1. RAG 权威指南:从本地实现到生产级优化的全面实践
javascript
1.RAG权威指南:从本地实现到生产级优化的全面实践大型语言模型(LLM)的知识受限于其训练数据,这是一个众所周知的痛点。检索增强生成(RAG)技术应运而生,它如同一座桥梁,将这些强大的基础模型与企业所需的实时、动态信息连接起来,极大地拓展了AI的能力边界。RAG将LLM从一个封闭的知识库,转变为一个能够提供准确、实时且紧密贴合上下文的动态工具。本文将作为你的向导,带你深入探索RAG的世界。我们首
- 检索增强生成(RAG)技术演进:从论文到工业级应用
AGI大模型与大数据研究院
AI大模型应用开发实战ai
检索增强生成(RAG)技术演进:从论文到工业级应用关键词:RAG、检索增强生成、大语言模型、知识检索、工业应用、技术演进、AI系统架构摘要:本文深入探讨检索增强生成(RAG)技术从学术研究到工业应用的完整演进历程。我们将从基础概念出发,逐步解析RAG的核心原理、架构设计、实现细节和优化策略,并通过实际案例展示如何构建高效可靠的工业级RAG系统。文章还将分析当前技术挑战和未来发展方向,为读者提供全面
- RAG 之 Prompt 动态选择的三种方式
2301_79306982
promptragai
“如果我有5个prompt模板,我想只选择一个每次都自动五选一能做到吗怎么做?”完全可以做到。这在复杂的RAG或Agentic工作流中是一个非常普遍且关键的需求,通常被称为“条件路由(ConditionalRouting)”或“动态调度(DynamicDispatching)”。其核心思想是系统需要根据输入的上下文(Query)或其他中间状态,智能地判断哪一个Prompt模板最适合用于生成最终答案
- 基于Deepseek+RAG构建企业知识库:文档预处理与数据整理
大势下的牛马
搭建本地gpt人工智能RAGDeepseek知识库
在当今数字化时代,企业知识库的构建对于知识管理和高效决策至关重要。基于Deepseek+RAG(Retrieval-AugmentedGeneration)技术构建企业知识库,能够有效整合企业内外部知识资源,实现知识的快速检索和精准应用。而在这一过程中,文档预处理与数据整理是关键的基础环节,直接关系到知识库的质量和后续应用效果。一、文件预处理:格式转换与数据清洗(一)支持格式与转换要求优先格式:在
- RAG实战指南 Day 11:文本分块策略与最佳实践
在未来等你
RAG实战指南RAG检索增强生成文本分块语义分割文档处理NLP人工智能
【RAG实战指南Day11】文本分块策略与最佳实践文章标签RAG,检索增强生成,文本分块,语义分割,文档处理,NLP,人工智能,大语言模型文章简述文本分块是RAG系统构建中的关键环节,直接影响检索准确率。本文深入解析5种主流分块技术:1)固定大小分块的实现与调优技巧;2)基于语义的递归分割算法;3)文档结构感知的分块策略;4)LLM增强的智能分块方法;5)多模态混合内容处理方案。通过电商知识库和科
- Spring AI:Tool Calling
虾条_花吹雪
SpringAIaijava
工具调用(也称为函数调用)是人工智能应用程序中的一种常见模式,允许模型与一组API或工具交互,以增强其功能。工具主要用于:信息检索。此类工具可用于从外部源(如数据库、web服务、文件系统或web搜索引擎)检索信息。目标是增强模型的知识,使其能够回答否则无法回答的问题。因此,它们可用于检索增强生成(RAG)场景。例如,一个工具可用于检索给定位置的当前天气,检索最新的新闻文章,或查询数据库中的特定记录
- 人工智能-基础篇-18-什么是RAG(检索增强生成:知识库+向量化技术+大语言模型LLM整合的技术框架)
weisian151
人工智能人工智能语言模型自然语言处理
RAG(Retrieval-AugmentedGeneration,检索增强生成)是一种结合外部知识检索与大语言模型(LLM)生成能力的技术框架,旨在提升生成式AI在问答、内容创作等任务中的准确性、实时性和领域适应性。1、核心概念大语言模型(LLM)的两大局限性:时效性不足:LLM的训练数据截止于某一时间点,无法获取最新信息(如2025年后的新事件)。知识幻觉:当问题超出模型训练数据范围时,LLM
- 大模型系列——RAG-Anything:开启多模态 RAG 的新纪元,让文档“活”起来!
猫猫姐
大模型人工智能大模型
RAG-Anything:开启多模态RAG的新纪元,让文档“活”起来!在AI技术日新月异的今天,一个名为RAG-Anything的开源项目正悄然掀起多模态文档处理的革命。它不再局限于纯文本,而是能“读懂”图像、表格、公式,甚至将它们关联起来!这究竟是怎样一位“全能型智能助手”?让我们一同揭开它的神秘面纱。项目简介:打破模态壁垒的智能引擎RAG-Anything是一款综合性多模态文档处理RAG(检索
- 开源 AI 联网搜索工具:Open-WebSearch MCP 全新升级,支持多引擎 + 流式响应!
Aasee.
开源人工智能javascriptmcp
开源AI联网搜索工具:Open-WebSearchMCP全新升级,支持多引擎+流式响应!「让你的AI插件真正能联网」——不需要APIKey,搜索结果可控、开箱即用!大家好,我最近开源了一个AI插件开发工具——Open-WebSearchMCP。这个项目旨在解决AI在实际应用中无法联网或联网费用高昂的问题,特别适合在Claude、LangChain、RAG方案中添加“实时搜索”能力。项目亮点一览✅多
- RAG实战指南 Day 8:PDF、Word和HTML文档解析实战
在未来等你
RAG实战指南RAG向量检索LLMAI开发知识库
【RAG实战指南Day8】PDF、Word和HTML文档解析实战开篇欢迎来到"RAG实战指南"系列的第8天!今天我们将深入探讨PDF、Word和HTML文档解析技术,这是构建企业级RAG系统的关键基础。在实际业务场景中,80%以上的知识都以这些文档格式存储,能否高效提取其中的结构化信息,直接决定了RAG系统的知识覆盖面和回答质量。通过本文,您将掌握:主流文档格式的解析原理与技术选型针对不同文档类型
- 从被动检索到主动思考:Naive RAG 到 Agentic RAG 的架构演进与关键技术解析
一休哥助手
人工智能架构RAG
摘要随着大语言模型(LLMs)的广泛应用,检索增强生成(Retrieval-AugmentedGeneration,RAG)技术已成为解决模型知识滞后与幻觉问题的核心方案。本文深入剖析从基础NaiveRAG到新一代AgenticRAG的架构演进路径,聚焦关键技术创新点(如递归检索、自适应查询改写、工具集成、多智能体协作),并通过架构图对比与案例分析,揭示其在复杂任务处理中的范式转变。全文超过500
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- QA - RAG智能问答系统中的文档切片与实现原理
ai开发
引言在现代企业知识管理系统中,智能问答系统正发挥着越来越重要的作用。GC-QA-RAG系统作为葡萄城技术栈中的重要组成部分,其核心功能是通过对文档内容进行智能切片和向量化存储,实现对技术文档的高效检索和问答。本文将深入剖析该系统的文档切片原理,包括短文档和长文档的不同处理策略,以及如何将这些技术应用于实际场景中。正文1.原始方案及其局限性最初的GC-QA-RAG系统采用了一种直观的方法:将整个文档
- 在Linux环境下从0私有化部署Dify
在Linux环境下从0搭建Dify准备工作系统环境私有化部署下载Dify代码ZIP包启动Dify启动Docker容器访问Dify本地环境服务器环境准备工作因工作需要私有化部署公司内部的知识库,研究了一下准备采用Dify+RAG的方式实现,以下是具体步骤。系统环境服务器配置:官方建议2核4G以上;Liunx版本:RockyLinuxrelease9.4;Docker版本:28.1.1;Dify版本:
- 在 Dify 平台中集成上下文工程技术
由数入道
人工智能数据库大数据人工智能软件工程dify
1.提升LLM问答准确率的上下文构建与提示策略大语言模型在开放领域问答中常面临幻觉和知识过时等问题。为提高回答准确率,上下文工程的关键是在提示中注入相关背景知识与指导。具体策略包括:检索增强(RAG):通过从知识库中检索相关内容并将其纳入提示,可以显著提升回答的准确性和可信度。Dify提供了知识检索节点,支持向量数据库存储外部知识,并将检索结果通过上下文变量注入LLM提示中。例如,在知识库问答应用
- 爆改RAG!用强化学习让你的检索增强生成系统“开挂”——从小白到王者的实战指南
许泽宇的技术分享
人工智能
“RAG不准?RL来救场!”——一位被RAG气哭的AI工程师前言:RAG的烦恼与AI炼丹师的自我修养在AI圈混久了,大家都知道RAG(Retrieval-AugmentedGeneration,检索增强生成)是大模型落地的“万金油”方案。无论是企业知识库、智能问答,还是搜索引擎升级,RAG都能插上一脚。但你用过RAG就知道,理想很丰满,现实很骨感。明明知识库里啥都有,问个“量子比特的数学表达式”,
- 大模型 AI智能体Coze知识库从使用到实战详解
非著名架构师
大模型知识文档人工智能Coze知识库
一、Coze知识库核心价值解析1.1知识库技术架构创新Coze知识库采用四层混合架构设计,在2025年大模型应用中展现出独特优势:存储层:支持向量数据库(Qdrant)+图数据库(Neo4j)双引擎处理层:集成PDF/PPT/Excel等23种文件解析器检索层:混合检索算法(BM25+稠密检索+语义路由)应用层:RAG(检索增强生成)优化接口与传统方案相比,查询准确率提升42%,特别擅长处理:专业
- Java+Python智能化云盘【Day5-1】
关沐吖
Java+PythonAi智能云盘项目开发专栏pythonjava开发语言
RAG系统链路和数据加载Loaders技术OK啊昨天Day4-2,最后提及了很多的一些Loader加载器,有文档类型、数据库类型、网页加载器类型等等,它们其实都是属于langchain_community.document_loaders这个包下的类。今天来先复习一下都有哪些,再讲讲其中的代码运行的基本框架,和文档中有图片的处理方式。Loader的分类与常见类型文件加载器(FileLoaders)
- 从维基百科到知识图谱:用 DSPy、OpenAI 和 TiDB 构建 GraphRAG 的奇妙旅程
步子哥
AGI通用人工智能知识图谱tidb人工智能
在信息爆炸的时代,如何快速从海量数据中提取有用信息,成为了技术发展的重要方向。传统的RAG(Retrieval-AugmentedGeneration)方法虽然在信息检索领域表现出色,但随着需求复杂度的提升,GraphRAG(基于知识图谱的RAG)逐渐成为更优的解决方案。本文将带您一步步了解如何利用DSPy、OpenAI和TiDBVectorDatabase,从维基百科数据构建一个GraphRAG
- 【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,Sequential Chain详解 ?
985小水博一枚呀
AI大模型学习路线人工智能学习langchain
【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?【AI大模型学习路线】第三阶段之RAG与LangChain——第十五章(LangChain与Chain组件)LLMChain,SequentialChain详解?文章目录【AI大模型学习路线】第三阶段之RAG与LangChain——第十五
- 【GitHub开源项目实战】Agent-Zero 多模态 Agent 框架的架构实现与实战落地
观熵
GitHub开源项目实战github开源架构
开源项目实战解析:Agent-Zero多模态Agent框架的架构实现与实战落地关键词:Agent-Zero、LLMAgent、多模态融合、LangGraph、结构化对话、函数调用、RAG、真实场景实战、开源项目分析摘要:Agent-Zero是一个以LangGraph为核心构建的多模态智能体框架,专注于大语言模型(LLMs)驱动下的多模态Agent系统实现,具备高度模块化、支持结构化对话状态流转、工
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb