2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 L

 The Heaviest Non-decreasing Subsequence Problem(最长不下降子序列变形)

Let SS be a sequence of integers s_{1}s1s_{2}s2......s_{n}sn Each integer is is associated with a weight by the following rules:

(1) If is is negative, then its weight is 00.

(2) If is is greater than or equal to 1000010000, then its weight is 55. Furthermore, the real integer value of s_{i}si is s_{i}-10000si10000 . For example, if s_{i}si is 1010110101, then is is reset to 101101 and its weight is 55.

(3) Otherwise, its weight is 11.

A non-decreasing subsequence of SS is a subsequence s_{i1}si1s_{i2}si2......s_{ik}sik, with i_{1}i1<i2 ... <ik, such that, for all 1 \leq j1j<k, we have s_{ij}sij<sij+1.

A heaviest non-decreasing subsequence of SS is a non-decreasing subsequence with the maximum sum of weights.

Write a program that reads a sequence of integers, and outputs the weight of its

heaviest non-decreasing subsequence. For example, given the following sequence:

8080 7575 7373 9393 7373 7373 1010110101 9797 -11 -11 114114 -11 1011310113 118118

The heaviest non-decreasing subsequence of the sequence is <73, 73, 73, 101, 113, 118><73,73,73,101,113,118> with the total weight being 1+1+1+5+5+1 = 141+1+1+5+5+1=14. Therefore, your program should output 1414 in this example.

We guarantee that the length of the sequence does not exceed 2*10^{5}2105

Input Format

A list of integers separated by blanks:s_{1}s1s_{2}s2,......,s_{n}sn

Output Format

A positive integer that is the weight of the heaviest non-decreasing subsequence.

样例输入

80 75 73 93 73 73 10101 97 -1 -1 114 -1 10113 118

样例输出

14
#include
#include
using namespace std;
const int maxn = 1e6+5;//范围有毒,不要信题目的保证。尽量开大一点,反正不要钱。
int a[maxn], d[maxn];
int main()
{
	int x,n=0,len=1;
	while (~scanf("%d", &x))//存序列
	{
		if (x < 0) continue;
		else if (x < 10000)
		{
			a[n++] = x;
		}
		else
		{
			for (int j = 0; j < 5; j++)
			{
				a[n++] = x - 10000;
			}
		}
	}
		d[1] = a[0];
		for (int i = 1; i < n; i++)//数组d保存长度为其下标的子序列的最小值
		{
			if (d[len] <= a[i])
			{
				len++;
				d[len] = a[i];
			}
			else
			{
				int j = upper_bound(d + 1, d + 1 + len, a[i])-d;//找到第一个大于a[i]的d[j]
				d[j] = a[i];
			}
		}
	printf("%d\n", len);//权值都为1,权值之和等于长度
	return 0;
}
转载地址:http://blog.csdn.net/lzc504603913/article/details/78078245

你可能感兴趣的:(算法)