NIO非阻塞网络编程

目录

  • 目标
  • JAVA NIO
  • Buffer缓冲区
  • Buffer工作原理
  • Buffer基本使用
  • ByteBuffer内存类型
  • Channel通道
  • SocketChannel
  • ServerSocketChannel
  • Selector选择器
  • NIO对比BIO
  • 小结

目标

了解NIO、熟悉Buffer API、channel、selector,NIO+多线程

JAVA NIO

NIO:new IO,非阻塞IO。
目的是为了解决替换掉IO网络编程的相关API。
NIO非阻塞网络编程_第1张图片

Buffer缓冲区

内存块中包含了NIO Buffer对象,对象提供了一组方法,可以操作这个内存块。
比Input和output操作更方便更容易操作,写入和读取需要手动记录和跟进。
NIO非阻塞网络编程_第2张图片

Buffer工作原理

更方便的操作,是因为里面记录了每一个操作点,同时还提供了数组操作的封装。
主要关注API的使用。
NIO非阻塞网络编程_第3张图片

Buffer基本使用

注意读写的转换,读和写模式下参数含义不一样。
put();写 flip();转换

public static void main(String[] args) {
        // 构建一个byte字节缓冲区,容量是4,堆内的内存
        ByteBuffer byteBuffer = ByteBuffer.allocate(4);
        // 默认写入模式,查看三个重要的指标
        System.out.println(String.format("初始化:capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));
        // 写入2字节的数据
        byteBuffer.put((byte) 1);
        byteBuffer.put((byte) 2);
        byteBuffer.put((byte) 3);
        // 再看数据
        System.out.println(String.format("写入3字节后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 转换为读取模式(不调用flip方法,也是可以读取数据的,但是position记录读取的位置不对)
        System.out.println("#######开始读取");
        byteBuffer.flip();
        byte a = byteBuffer.get();
        System.out.println(a);
        byte b = byteBuffer.get();
        System.out.println(b);
        System.out.println(String.format("读取2字节数据后,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // 继续写入3字节,此时读模式下,limit=3,position=2.继续写入只能覆盖写入一条数据
        // clear()方法清除整个缓冲区。compact()方法仅清除已阅读的数据。转为写入模式
        byteBuffer.compact(); // buffer : 1 , 3
        byteBuffer.put((byte) 3);
        byteBuffer.put((byte) 4);
        byteBuffer.put((byte) 5);
        System.out.println(String.format("最终的情况,capacity容量:%s, position位置:%s, limit限制:%s", byteBuffer.capacity(),
                byteBuffer.position(), byteBuffer.limit()));

        // rewind() 重置position为0
        // mark() 标记position的位置
        // reset() 重置position为上次mark()标记的位置

    }

ByteBuffer内存类型

少一次拷贝:将数据拷贝到堆外内存,在进行写入,垃圾回收机制,移动java对象内存,防止和Gc冲突。
堆外内存,GC不会对其管理,需要收到回收。
NIO非阻塞网络编程_第4张图片
基本使用

//直接申请堆外内存
ByteBuffer byteBuffer = ByteBuffer.allocateDirect(4);

Channel通道

Buffer就是给Channel来操作的。
Channe即可以创建连接和读取数据,全部基于Channel对象。可以进行非阻塞操作。
SocketChannel和ServerSocketChannel对应Socket和ServerSocket的改进
NIO非阻塞网络编程_第5张图片

SocketChannel

替代net+io包,一套API操作,很方便。
NIO非阻塞网络编程_第6张图片

ServerSocketChannel

非阻塞模式。
NIO非阻塞网络编程_第7张图片
基本使用
注意在非阻塞情况下,有可能返回null、没有读取到数据或是否写完了数据。

//ServerSocketChannel
public static void main(String[] args) throws Exception {
        // 创建网络服务端
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
        serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
        System.out.println("启动成功");
        while (true) {
            SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
            // tcp请求 读取/响应
            if (socketChannel != null) {
                System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
                socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
                try {
                    ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                    while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
                        // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                        if (requestBuffer.position() > 0) break;
                    }
                    if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
                    requestBuffer.flip();
                    byte[] content = new byte[requestBuffer.limit()];
                    requestBuffer.get(content);
                    System.out.println(new String(content));
                    System.out.println("收到数据,来自:"+ socketChannel.getRemoteAddress());

                    // 响应结果 200
                    String response = "HTTP/1.1 200 OK\r\n" +
                            "Content-Length: 11\r\n\r\n" +
                            "Hello World";
                    ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                    while (buffer.hasRemaining()) {
                        socketChannel.write(buffer);// 非阻塞
                    }
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }
        // 用到了非阻塞的API, 在设计上,和BIO可以有很大的不同.继续改进
    }
//客户端
public class NIOClient {

    public static void main(String[] args) throws Exception {
        SocketChannel socketChannel = SocketChannel.open();
        socketChannel.configureBlocking(false);
        socketChannel.connect(new InetSocketAddress("127.0.0.1", 8080));
        while (!socketChannel.finishConnect()) {
            // 没连接上,则一直等待
            Thread.yield();
        }
        Scanner scanner = new Scanner(System.in);
        System.out.println("请输入:");
        // 发送内容
        String msg = scanner.nextLine();
        ByteBuffer buffer = ByteBuffer.wrap(msg.getBytes());
        while (buffer.hasRemaining()) {
            socketChannel.write(buffer);
        }
        // 读取响应
        System.out.println("收到服务端响应:");
        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);

        while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
            if (requestBuffer.position() > 0) break;
        }
        requestBuffer.flip();
        byte[] content = new byte[requestBuffer.limit()];
        requestBuffer.get(content);
        System.out.println(new String(content));
        scanner.close();
        socketChannel.close();
    }

}

问题
此处没有数据会进入死循环状态,会导致服务端线程阻塞,只有读取完数据才能继续执行。类似于BIO的阻塞读取数据。

while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
                        // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                        if (requestBuffer.position() > 0) break;
                    }

改进版本
改进思想:利用非阻塞特性,除掉阻塞代码,而不是使用多线程技术。
存储所有连接,有连接就去处理连接,没有连接就去处理数据,通过while轮训检查数据。
NIO非阻塞网络编程_第8张图片

public class NIOServer1 {
    /**
     * 已经建立连接的集合
     */
    private static ArrayList<SocketChannel> channels = new ArrayList<>();

    public static void main(String[] args) throws Exception {
        // 创建网络服务端
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式
        serverSocketChannel.socket().bind(new InetSocketAddress(8080)); // 绑定端口
        System.out.println("启动成功");
        while (true) {
            SocketChannel socketChannel = serverSocketChannel.accept(); // 获取新tcp连接通道
                // tcp请求 读取/响应
                if (socketChannel != null) {
                System.out.println("收到新连接 : " + socketChannel.getRemoteAddress());
                socketChannel.configureBlocking(false); // 默认是阻塞的,一定要设置为非阻塞
                channels.add(socketChannel);
            } else {
                // 没有新连接的情况下,就去处理现有连接的数据,处理完的就删除掉
                Iterator<SocketChannel> iterator = channels.iterator();
                while (iterator.hasNext()) {
                    SocketChannel ch = iterator.next();
                    try {
                        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);

                        if (ch.read(requestBuffer) == 0) {
                            // 等于0,代表这个通道没有数据需要处理,那就待会再处理
                            continue;
                        }
                        while (ch.isOpen() && ch.read(requestBuffer) != -1) {
                            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                            if (requestBuffer.position() > 0) break;
                        }
                        if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
                        requestBuffer.flip();
                        byte[] content = new byte[requestBuffer.limit()];
                        requestBuffer.get(content);
                        System.out.println(new String(content));
                        System.out.println("收到数据,来自:" + ch.getRemoteAddress());

                        // 响应结果 200
                        String response = "HTTP/1.1 200 OK\r\n" +
                                "Content-Length: 11\r\n\r\n" +
                                "Hello World";
                        ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                        while (buffer.hasRemaining()) {
                            ch.write(buffer);
                        }
                        iterator.remove();
                    } catch (IOException e) {
                        e.printStackTrace();
                        iterator.remove();
                    }
                }
            }
        }
        // 用到了非阻塞的API, 再设计上,和BIO可以有很大的不同
        // 问题: 轮询通道的方式,低效,浪费CPU
    }
}

Selector选择器

之前线程监听的是channel,通过channel来读取或者写入数据,而Selector监听的是事件,所以是事件监听机制。
NIO非阻塞网络编程_第9张图片
NIO非阻塞网络编程_第10张图片
改进代码示例
改进思想:

  1. 在channel上使用Selector注册监听。主要是接收连接的监听。
  2. 轮训接收到的监听,有监听过来,则取出,然后在建立对象,注册数据的监听。不再轮训。
  3. 有数据读则读取数据的监听事件。
/**
 * 结合Selector实现的非阻塞服务端(放弃对channel的轮询,借助消息通知机制)
 */
public class NIOServerV2 {

    public static void main(String[] args) throws Exception {
        // 1. 创建网络服务端ServerSocketChannel
        ServerSocketChannel serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false); // 设置为非阻塞模式

        // 2. 构建一个Selector选择器,并且将channel注册上去
        Selector selector = Selector.open();
        SelectionKey selectionKey = serverSocketChannel.register(selector, 0, serverSocketChannel);// 将serverSocketChannel注册到selector
        selectionKey.interestOps(SelectionKey.OP_ACCEPT); // 对serverSocketChannel上面的accept事件感兴趣(serverSocketChannel只能支持accept操作)

        // 3. 绑定端口
        serverSocketChannel.socket().bind(new InetSocketAddress(8080));

        System.out.println("启动成功");
		//轮训是否有事件
        while (true) {
            // 不再轮询通道,改用下面轮询事件的方式.select方法有阻塞效果,直到有事件通知才会有返回
            selector.select();
            // 获取事件
            Set<SelectionKey> selectionKeys = selector.selectedKeys();
            // 遍历查询结果e
            Iterator<SelectionKey> iter = selectionKeys.iterator();
            while (iter.hasNext()) {
                // 被封装的查询结果
                SelectionKey key = iter.next();
                iter.remove();
                // 关注 Read 和 Accept两个事件
                if (key.isAcceptable()) {
                    ServerSocketChannel server = (ServerSocketChannel) key.attachment();
                    // 将拿到的客户端连接通道,注册到selector上面
                    SocketChannel clientSocketChannel = server.accept(); // mainReactor 轮询accept
                    clientSocketChannel.configureBlocking(false);
                    clientSocketChannel.register(selector, SelectionKey.OP_READ, clientSocketChannel);
                    System.out.println("收到新连接 : " + clientSocketChannel.getRemoteAddress());
                }

                if (key.isReadable()) {
                    SocketChannel socketChannel = (SocketChannel) key.attachment();
                    try {
                        ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                        while (socketChannel.isOpen() && socketChannel.read(requestBuffer) != -1) {
                            // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                            if (requestBuffer.position() > 0) break;
                        }
                        if(requestBuffer.position() == 0) continue; // 如果没数据了, 则不继续后面的处理
                        requestBuffer.flip();
                        byte[] content = new byte[requestBuffer.limit()];
                        requestBuffer.get(content);
                        System.out.println(new String(content));
                        System.out.println("收到数据,来自:" + socketChannel.getRemoteAddress());
                        // TODO 业务操作 数据库 接口调用等等

                        // 响应结果 200
                        String response = "HTTP/1.1 200 OK\r\n" +
                                "Content-Length: 11\r\n\r\n" +
                                "Hello World";
                        ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                        while (buffer.hasRemaining()) {
                            socketChannel.write(buffer);
                        }
                    } catch (IOException e) {
                        // e.printStackTrace();
                        key.cancel(); // 取消事件订阅
                    }
                }
            }
            selector.selectNow();
        }
        // 问题: 此处一个selector监听所有事件,一个线程处理所有请求事件. 会成为瓶颈! 要有多线程的运用
    }
}

NIO对比BIO

NIO:使用单个线程处理多个连接,主要利用事件监听机制,线程利用率会更高,是性能更强大。
NIO非阻塞网络编程_第11张图片

NIO与多线程结合的改进方案

可以代表Java开发中NIO与多线程结合的一种标准做法。多路复用:一个线程通过状态的能处理多个线程的请求,达到复用的目的。
实现方案是基于Reactor线程模型进行的调整。
左图:单Reactor模式,实质将底层网络处理和应用层逻辑处理进行分离,提高处理效率,服务器多核特点也得到了利用。
一个线程是Reactor线程:主要负责网络数据接收和连接处理。
ThreadPool线程池:处理请求的后续逻辑。
右图:多Reactor模式(Reactor主要处理网络连接的),将Reactor分成多种。
mainReactor:处理网络连接。
subReactor:处理数据读取和发送。
ThreadPool线程池:处理请求的后续逻辑。
区别在于多了一个Reactor,在网络事件上多了一种分发。

NIO非阻塞网络编程_第12张图片
代码示例

/**
 * NIO selector 多路复用reactor线程模型
 */
public class NIOServerV3 {
    /** 处理业务操作的线程 */
    private static ExecutorService workPool = Executors.newCachedThreadPool();

    /**
     * 封装了selector.select()等事件轮询的代码
     */
    abstract class ReactorThread extends Thread {

        Selector selector;
        LinkedBlockingQueue<Runnable> taskQueue = new LinkedBlockingQueue<>();

        /**
         * Selector监听到有事件后,调用这个方法
         */
        public abstract void handler(SelectableChannel channel) throws Exception;

        private ReactorThread() throws IOException {
            selector = Selector.open();
        }

        volatile boolean running = false;

        @Override
        public void run() {
            // 轮询Selector事件
            while (running) {
                try {
                    // 执行队列中的任务
                    Runnable task;
                    while ((task = taskQueue.poll()) != null) {
                        task.run();
                    }
                    selector.select(1000);

                    // 获取查询结果
                    Set<SelectionKey> selected = selector.selectedKeys();
                    // 遍历查询结果
                    Iterator<SelectionKey> iter = selected.iterator();
                    while (iter.hasNext()) {
                        // 被封装的查询结果
                        SelectionKey key = iter.next();
                        iter.remove();
                        int readyOps = key.readyOps();
                        // 关注 Read 和 Accept两个事件
                        if ((readyOps & (SelectionKey.OP_READ | SelectionKey.OP_ACCEPT)) != 0 || readyOps == 0) {
                            try {
                                SelectableChannel channel = (SelectableChannel) key.attachment();
                                channel.configureBlocking(false);
                                handler(channel);
                                if (!channel.isOpen()) {
                                    key.cancel(); // 如果关闭了,就取消这个KEY的订阅
                                }
                            } catch (Exception ex) {
                                key.cancel(); // 如果有异常,就取消这个KEY的订阅
                            }
                        }
                    }
                    selector.selectNow();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
        }

        private SelectionKey register(SelectableChannel channel) throws Exception {
            // 为什么register要以任务提交的形式,让reactor线程去处理?
            // 因为线程在执行channel注册到selector的过程中,会和调用selector.select()方法的线程争用同一把锁
            // 而select()方法实在eventLoop中通过while循环调用的,争抢的可能性很高,为了让register能更快的执行,就放到同一个线程来处理
            FutureTask<SelectionKey> futureTask = new FutureTask<>(() -> channel.register(selector, 0, channel));
            taskQueue.add(futureTask);
            return futureTask.get();
        }

        private void doStart() {
            if (!running) {
                running = true;
                start();
            }
        }
    }

    private ServerSocketChannel serverSocketChannel;
    // 1、创建多个线程 - accept处理reactor线程 (accept线程)
    private ReactorThread[] mainReactorThreads = new ReactorThread[1];
    // 2、创建多个线程 - io处理reactor线程  (I/O线程)
    private ReactorThread[] subReactorThreads = new ReactorThread[8];

    /**
     * 初始化线程组
     */
    private void newGroup() throws IOException {
        // 创建IO线程,负责处理客户端连接以后socketChannel的IO读写
        for (int i = 0; i < subReactorThreads.length; i++) {
            subReactorThreads[i] = new ReactorThread() {
                @Override
                public void handler(SelectableChannel channel) throws IOException {
                    // work线程只负责处理IO处理,不处理accept事件
                    SocketChannel ch = (SocketChannel) channel;
                    ByteBuffer requestBuffer = ByteBuffer.allocate(1024);
                    while (ch.isOpen() && ch.read(requestBuffer) != -1) {
                        // 长连接情况下,需要手动判断数据有没有读取结束 (此处做一个简单的判断: 超过0字节就认为请求结束了)
                        if (requestBuffer.position() > 0) break;
                    }
                    if (requestBuffer.position() == 0) return; // 如果没数据了, 则不继续后面的处理
                    requestBuffer.flip();
                    byte[] content = new byte[requestBuffer.limit()];
                    requestBuffer.get(content);
                    System.out.println(new String(content));
                    System.out.println(Thread.currentThread().getName() + "收到数据,来自:" + ch.getRemoteAddress());

                    // TODO 业务操作 数据库、接口...
                    workPool.submit(() -> {
                    });

                    // 响应结果 200
                    String response = "HTTP/1.1 200 OK\r\n" +
                            "Content-Length: 11\r\n\r\n" +
                            "Hello World";
                    ByteBuffer buffer = ByteBuffer.wrap(response.getBytes());
                    while (buffer.hasRemaining()) {
                        ch.write(buffer);
                    }
                }
            };
        }

        // 创建mainReactor线程, 只负责处理serverSocketChannel
        for (int i = 0; i < mainReactorThreads.length; i++) {
            mainReactorThreads[i] = new ReactorThread() {
                AtomicInteger incr = new AtomicInteger(0);

                @Override
                public void handler(SelectableChannel channel) throws Exception {
                    // 只做请求分发,不做具体的数据读取
                    ServerSocketChannel ch = (ServerSocketChannel) channel;
                    SocketChannel socketChannel = ch.accept();
                    socketChannel.configureBlocking(false);
                    // 收到连接建立的通知之后,分发给I/O线程继续去读取数据
                    int index = incr.getAndIncrement() % subReactorThreads.length;
                    ReactorThread workEventLoop = subReactorThreads[index];
                    workEventLoop.doStart();
                    SelectionKey selectionKey = workEventLoop.register(socketChannel);
                    selectionKey.interestOps(SelectionKey.OP_READ);
                    System.out.println(Thread.currentThread().getName() + "收到新连接 : " + socketChannel.getRemoteAddress());
                }
            };
        }


    }

    /**
     * 初始化channel,并且绑定一个eventLoop线程
     *
     * @throws IOException IO异常
     */
    private void initAndRegister() throws Exception {
        // 1、 创建ServerSocketChannel
        serverSocketChannel = ServerSocketChannel.open();
        serverSocketChannel.configureBlocking(false);
        // 2、 将serverSocketChannel注册到selector
        int index = new Random().nextInt(mainReactorThreads.length);
        mainReactorThreads[index].doStart();
        SelectionKey selectionKey = mainReactorThreads[index].register(serverSocketChannel);
        selectionKey.interestOps(SelectionKey.OP_ACCEPT);
    }

    /**
     * 绑定端口
     *
     * @throws IOException IO异常
     */
    private void bind() throws IOException {
        //  1、 正式绑定端口,对外服务
        serverSocketChannel.bind(new InetSocketAddress(8080));
        System.out.println("启动完成,端口8080");
    }

    public static void main(String[] args) throws Exception {
        NIOServerV3 nioServerV3 = new NIOServerV3();
        nioServerV3.newGroup(); // 1、 创建main和sub两组线程
        nioServerV3.initAndRegister(); // 2、 创建serverSocketChannel,注册到mainReactor线程上的selector上
        nioServerV3.bind(); // 3、 为serverSocketChannel绑定端口
    }
}

实现代码很长,比较难以理解,结合个人理解,已比较通俗易懂的方式总结一下,方便以后查阅和记忆。

角色:boss(mainReactor) 员工A(subReactor) 员工B(subReactor)
业务场景:boss一般对外负责接业务需求,然后交由员工来处理。
客户:我有一个需求,希望你们来帮我实现。(客户端希望建立一个连接)
boss:可以,很高兴为你服务。(mainReactor)接收请求连接。
boss:(翻牌,选取员工A)小A,你过来,有一个需求交给你做,这是客户的联系方式158XXXX,你重点关注他对报价的期望。(选取subReactor线程,将建立的连接交由其处理,并注册对应的感兴趣事件)。
小A:好的,老板,拿到联系方式,开始和客户建立沟通,并关注客户报价需求。(subReactor循环监听channl注册的事件)。
小A的自白:客户想让我开发一个网站,我又不是搞网站开发的。交给开发组去做吧。(将具体的业务交给业务线程池来完成)。

小结

NIO非阻塞网络编程_第13张图片

你可能感兴趣的:(高并发网络编程)