Miller-Rabin素性测试算法详解 ——定理

代码图片来自:https://blog.csdn.net/ECNU_LZJ/article/details/72675595

两个引理

证明过程:

代码不是完整的一道题目,只涉及了素数测试的部分

This is the code

typedef long long int ll;
 
ll mod_mul(ll a, ll b, ll mod)//快速乘积求模
{
    ll res = 0;
    while (b)
    {
        if (b & 1)
            res = (res + a) % mod;
        a = (a + a) % mod;
        b >>= 1;
    }
    return res;
}
ll mod_pow(ll a, ll n, ll mod)//快速幂求模
{
    ll res = 1;
    while (n)
    {
        if (n & 1)
            res = mod_mul(res, a, mod);
        a = mod_mul(a, a, mod);
        n >>= 1;
    }
    return res;
}
bool Miller_Rabin(ll n) // Miller-Rabin随机算法检测n是否为素数
{
    if (n == 2)
        return true;
    if (n < 2 || !(n & 1))
        return false;
    ll m = n - 1, k = 0;
    while (!(m & 1))
    {
        k++;
        m >>= 1;
    }
    for (int i = 1; i <= 20; i++)  // 20为Miller-Rabin测试的迭代次数,10次左右就OK了
    {
        ll a = rand() % (n - 1) + 1;
        ll x = mod_pow(a, m, n);
        ll y;
        for (int j = 1; j <= k; j++)
        {
            y = mod_mul(x, x, n);
            if (y == 1 && x != 1 && x != n - 1)
                return false;
            x = y;
        }
        if (y != 1)
            return false;
    }
    return true;
}

 

你可能感兴趣的:(模板)