- WebRover: 专为训练大型语言模型和 AI 应用程序而设计的 Python 库
数据集
2024-11-30,由Area-25团队开发的一个专门用于生成高质量网络内容数据集的Python库。该数据集旨在为大型语言模型(LLM)和人工智能应用的训练提供丰富的数据资源。数据集地址:WebRoverDataset|自然语言处理数据集|AI模型训练数据集一、让我们一起来看一下WebRoverWebRover通过智能网络爬虫技术,自动从网络中提取与特定主题相关的内容,并支持多种输入格式,如JS
- 从自然语言到提示词:编程范式的革命
AI天才研究院
计算机软件编程原理与应用实践大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
从自然语言到提示词:编程范式的革命关键词:编程范式、自然语言处理、提示词编程、人工智能、算法原理摘要:随着人工智能技术的不断发展,编程范式正经历着从自然语言处理向基于提示词的人工智能编程模式的转变。本文旨在探讨这一转变的背景、动机、原理及其在软件开发实践和工程方法论中的影响。文章将逐步分析自然语言处理和提示词编程的核心概念,讲解算法原理和数学模型,并通过实际案例展示编程范式转变的应用效果。第一部分
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- 多头潜在注意力(MLA)是怎么来的,什么原理,能用简单的示例解释么
百态老人
学习
多头潜在注意力(Multi-HeadLatentAttention,简称MLA)是一种改进的注意力机制,旨在提高自然语言处理(NLP)模型的推理效率和性能。其核心思想是通过低秩联合压缩键(Key)和值(Value),减少推理过程中所需的内存和计算资源,从而实现更高效的处理。MLA的原理在传统的多头注意力机制(MHA)中,每个输入token的键和值需要被缓存,这导致了巨大的内存开销。具体来说,对于每
- AI人工智能深度学习算法:高并发场景下深度学习代理的性能调优
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1深度学习代理的兴起近年来,随着人工智能技术的飞速发展,深度学习在各个领域都取得了显著的成果。特别是在自然语言处理、图像识别、语音识别等领域,深度学习模型的性能已经超越了传统方法。为了更好地将深度学习技术应用于实际场景,深度学习代理应运而生。深度学习代理是一种将深度学习模型封装起来,并提供对外接口的服务。它可以接收来自客户端的请求,将请求数据输入到深度学习模型中进行推理,并将推理结
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- Transformer模型全面解析:工作原理、应用与未来展望*
泰山AI
AI大模型应用开发transformer
概述:深入探讨Transformer模型的工作原理,分析其在NLP领域的应用场景,并展望其未来发展趋势。本文为您提供关于Transformer模型的全面指南。正文Transformer模型全面解析:工作原理、应用与未来展望在人工智能的浪潮中,Transformer模型以其强大的性能和广泛的应用场景,成为了自然语言处理(NLP)领域的一颗璀璨明星。本文将对Transformer模型进行深入剖析,从工
- 一切皆是映射:Transformer架构全面解析
AI天才研究院
计算大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
背景介绍自2017年,Transformer(自注意力机制)架构的问世以来,它已经成为自然语言处理(NLP)领域的主流技术之一。Transformer架构的出现,使得自然语言处理的任务变得更加简单、高效,同时也为许多其他领域提供了灵感。通过深入剖析Transformer,我们可以更好地理解其核心概念、原理和实际应用场景。这篇文章将全面解析Transformer架构,从核心概念到实际应用,帮助读者深
- 大语言模型原理基础与前沿 指令生成
AI大模型应用之禅
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
大语言模型、指令生成、Transformer、BERT、GPT、LLaMA、Fine-tuning、PromptEngineering1.背景介绍近年来,大语言模型(LargeLanguageModels,LLMs)在自然语言处理领域取得了令人瞩目的成就。从文本生成、翻译到问答和代码编写,LLMs展现出强大的能力,深刻地改变了我们与语言交互的方式。指令生成作为LLMs应用的重要方向之一,旨在通过明
- 使用ChatLlamaCpp和Llama CPP Python进行聊天模型集成
AWsggdrg
llamapython开发语言
在这篇文章中,我们将探讨如何使用ChatLlamaCpp和LlamaCPPPython库来搭建一个强大的聊天模型。我们将详细讲解如何进行模型集成,并提供完整的代码示例以帮助您快速上手。技术背景介绍随着自然语言处理技术的不断发展,越来越多的应用需要集成复杂的聊天模型以提高交互能力。ChatLlamaCpp是一个基于LlamaCPPPython库构建的聊天模型,支持多种功能调用和结构化输出,非常适合用
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- Transformer架构原理详解:编码器(Encoder)和解码器(Decoder)
AI大模型应用之禅
AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
Transformer,编码器,解码器,自注意力机制,多头注意力,位置编码,序列到序列,自然语言处理1.背景介绍近年来,深度学习在自然语言处理(NLP)领域取得了显著进展,其中Transformer架构扮演着至关重要的角色。自2017年谷歌发布了基于Transformer的机器翻译模型BERT以来,Transformer及其变体在各种NLP任务上取得了突破性的成果,例如文本分类、问答系统、文本摘要
- 使用Amazon Bedrock API调用Anthropic的Claude模型
dwa46a56w4d
easyui前端javascriptpython
在AI模型应用领域,亚马逊的BedrockAPI提供了便捷的方式来访问诸如Anthropic的Claude这样强大的模型。通过AmazonBedrock,开发者可以在云端直接调用Claude进行各种自然语言处理任务。本指南将引导您如何在Python中通过Bedrock来使用Claude模型。技术背景介绍Claude是由Anthropic开发的AI模型,提供强大的自然语言处理能力。通过AmazonB
- PyTorch 基础数据集:从理论到实践的深度学习基石
那年一路北
Pytorch理论+实践深度学习pytorch人工智能
一、引言深度学习作为当今人工智能领域的核心技术,在图像识别、自然语言处理、语音识别等众多领域取得了令人瞩目的成果。而在深度学习的体系中,数据扮演着举足轻重的角色,它是模型训练的基础,如同建筑的基石,决定了模型的性能和泛化能力。PyTorch作为当下最流行的深度学习框架之一,为开发者提供了丰富且强大的工具来处理数据集。本文将深入探讨PyTorch中的基础数据集,从深度学习中数据的重要性出发,详细介绍
- 使用 LangChain 构建多PDF文档聊天应用
jkgSFS
langchainpdfeasyuipython
随着大型语言模型(LLMs)的普及,如何将它们应用于文档处理成为了热门话题之一。本文将通过一个教程,展示如何使用LangChain构建一个能够处理多个PDF文档并与之对话的应用。技术背景介绍LangChain是一个广受欢迎的库,能够帮助开发者轻松地与LLMs和不同的嵌入技术进行整合。它提供了方便的接口和工具,使得复杂的自然语言处理任务变得简单高效。核心原理解析我们将利用LangChain来读取多个
- 大模型的RAG微调与Agent:提升智能代理的效率与效果
WeeJot
人工智能人工智能
目录编辑引言RAG模型概述检索阶段生成阶段RAG模型的微调数据集选择损失函数设计微调策略超参数调整RAG模型在智能代理中的应用客户服务信息检索内容创作决策支持:结论引言在人工智能的快速发展中,大型预训练模型(LLMs)已经成为推动技术进步的关键力量。这些模型通过在海量数据上的预训练,掌握了丰富的语言知识和模式识别能力,从而在多种自然语言处理任务上展现出卓越的性能。然而,预训练模型的通用性也意味着它
- ChatGPT 绘图的工作原理
ChatGPT的绘图功能结合了自然语言处理(NLP)和图像生成的技术,这种综合能力依赖于预训练模型(如GPT-4)和图像生成模型(如DALL-E)之间的紧密协作。ChatGPT本质上是一个大规模的语言模型,但通过与图像生成模型集成,它得以执行基于描述生成图像的任务。接下来,我们将从模型架构、训练方法、推理机制和一些技术挑战等方面,详细讨论ChatGPT进行绘图的工作原理。
- 深度解析智能问答系统:如何打造精准、高效的AI对话架构?
和老莫一起学AI
人工智能架构自然语言处理产品经理语言模型学习ai
在人工智能的飞速发展中,智能问答系统(QA系统)逐渐成为了企业内部管理、客户服务、搜索引擎等多个领域中的关键技术。今天,我们将深入探讨一个基于大模型、自然语言处理、知识检索的智能问答系统的架构,详细介绍其技术原理、流程以及未来应用前景。一、系统整体概览在这个智能问答系统中,整个流程可以大致划分为两大部分:前端问答生成与后端离线数据处理。前端部分是用户交互的核心,通过用户的输入、关键词提取、检索和问
- AI行业高压与人才健康:纪念Felix Hill,并探讨AI代码生成工具的价值
前端
今天,我们怀着沉痛的心情悼念GoogleDeepMind研究科学家FelixHill,这位杰出的AI学者在41岁的年纪离开了我们。他的离世引发了我们对AI行业高压环境与人才健康问题的深刻反思。Felix生前曾公开表达AI行业前所未有的压力,这促使我们思考如何利用技术,例如AI代码生成器,来改善开发者的工作环境,提升效率,守护人才健康。FelixHill在自然语言处理和人工智能领域取得了令人瞩目的成
- AI代码生成工具的未来:杨立昆的洞见与AI革命
前端
近年来,人工智能(AI)领域取得了令人瞩目的进展,特别是以大型语言模型为代表的AI技术,在自然语言处理、图像生成等领域展现出强大的能力。然而,深度学习先驱杨立昆(YannLeCun)却对现有的AI系统提出了尖锐的批评,他认为目前的AI系统“理解能力远不如猫”,缺乏对真实世界的理解和常识。这引发了人们对AI未来发展方向的思考,也为我们探讨AI代码生成工具,以及AI技术对人类社会的影响提供了新的视角。
- 未来教育:AI知识库如何重塑学习体验
知识管理知识库知识库软件
在科技日新月异的今天,教育领域正经历着前所未有的变革。人工智能(AI)技术的快速发展,特别是AI知识库的广泛应用,正在重塑我们的学习体验,使之变得更加高效、个性化和智能化。本文将深入探讨AI知识库如何影响未来教育,以及它如何为学习者提供前所未有的学习体验。一、AI知识库:教育领域的智能助手AI知识库,作为结合了人工智能技术的知识管理系统,不仅能够存储和处理海量信息,还能通过自然语言处理、机器学习等
- 2024 年技术盘点与展望:从 AI 辅助到个人成长的多元探索
109702008
杂谈人工智能
一、引言2024年,技术领域的发展日新月异,我在这片汹涌的浪潮中不断探索与成长。这一年,我不仅见证了人工智能技术的飞速发展,还通过AI辅助创作、AI赋能编程以及参与各类竞赛与课程,实现了个人技术的显著提升与视野的拓展。本文将从总结盘点的角度,回顾我在技术领域的成长历程,并对未来进行展望。二、AI辅助创作:提升写作效率与质量在自然语言处理技术(NLP)的推动下,AI写作工具成为了我的得力助手。这些工
- AI大模型如何赋能电商行业,引领变革
虞书欣的C
人工智能开发语言
•个性化推荐:利用机器学习算法分析用户的历史购买记录、浏览行为和喜好,生成个性化的产品推荐列表,提升用户的购买意愿和满意度。•优化用户体验:•智能搜索引擎:运用自然语言处理技术,优化搜索引擎,让用户能够通过自然语言进行搜索。•虚拟客服:通过聊天机器人和语音助手,提供24/7的客户支持,快速解答用户咨询。•图像识别:利用计算机视觉技术,用户可以通过拍照识别商品,快速找到相似商品或进行排版搭配推荐。•
- 17-7 向量数据库之野望7 - PostgreSQL 和pgvector
拉达曼迪斯II
AIGC学习数据库管理工具AI创业数据库postgresql人工智能机器学习AIGC搜索引擎
PostgreSQL是一款功能强大的开源对象关系数据库系统,它已将其功能扩展到传统数据管理之外,通过pgvector扩展支持矢量数据。这一新增功能满足了对高效处理高维矢量数据日益增长的需求,这些数据通常用于机器学习、自然语言处理(NLP)和推荐系统等应用。https://github.com/mazzasaverio/find-your-opensource-project什么是pgvector?
- 使用Python实现LLM的文本生成:风格迁移与内容控制
二进制独立开发
GenAI与Python非纯粹GenAIpython开发语言人工智能自然语言处理分布式语言模型transformer
文章目录引言1.大型语言模型(LLM)概述1.1Transformer架构1.2预训练与微调2.文本生成基础2.1无条件生成2.2条件生成3.风格迁移3.1风格迁移的基本原理3.2使用Python实现风格迁移4.内容控制4.1内容控制的基本原理4.2使用Python实现内容控制5.高级技巧与优化5.1多轮对话生成5.2生成参数优化6.应用场景与未来展望结论引言随着自然语言处理(NLP)技术的快速发
- ChatGPT详解
Loving_enjoy
实用技巧人工智能自然语言处理
ChatGPT是一款由OpenAI研发和维护的先进的自然语言处理模型(NLP),全名为ChatGenerativePre-trainedTransformer,于2022年11月30日发布。以下是对ChatGPT的详细介绍:###一、技术架构与原理1.**技术架构**:ChatGPT建立在Transformer架构之上,这是一种深度学习模型,特别适用于处理自然语言。其核心是自注意力机制,允许模型在
- 机器学习的介绍
2201_75874206
机器学习人工智能
目录1.机器学习的定义2.机器学习的原理3.机器学习的方法4.机器学习的分类5.机器学习的评估6.机器学习的应用场景7.机器学习与人工智能的关系结论机器学习在自然语言处理中的最新应用和技术是什么?如何评估机器学习模型的性能,除了交叉验证、MSE和RMSE外,还有哪些其他重要的指标?在金融风险管理中,机器学习如何帮助预测市场趋势和信用风险?市场趋势预测信用风险评估机器学习与人工智能之间的关系在未来发
- 【大模型】从零样本到少样本学习:一文读懂 Zero-shot、One-shot 和 Few-shot 的核心原理与应用!
橙子小哥的代码世界
NLP自然语言理解大模型自然语言处理sklearn深度学习神经网络tensorflow
《从零样本到少样本学习:一文读懂Zero-shot、One-shot和Few-shot的核心原理与应用!》正文:在自然语言处理(NLP)领域,Zero-shot、One-shot和Few-shot学习已经成为衡量大语言模型泛化能力的重要指标。尤其是在大规模预训练模型(如GPT系列)的推动下,这些技术得到了广泛应用和关注。本篇文章将带你全面了解这三种学习方法的核心概念、原理和实际应用场景。1.什么是
- 详解AI大模型的主要指标与国内常见大模型对比分析
wit_@
人工智能AIGC语言模型ai大数据服务器
AI大模型的主要指标与国内常见大模型对比分析随着人工智能技术的快速发展,大模型(LargeAIModels)在自然语言处理、计算机视觉和多模态任务中取得了突破性进展。对于选择和评价AI大模型,不仅需要关注其功能,还要理解其关键指标和性能表现。本文将详细分析AI大模型的主要评价指标,并对国内常见大模型进行具体对比,提供实际数值和深度解析。一、AI大模型的主要指标AI大模型的性能和实用性通常通过以下指
- windows下源码安装golang
616050468
golang安装golang环境windows
系统: 64位win7, 开发环境:sublime text 2, go版本: 1.4.1
1. 安装前准备(gcc, gdb, git)
golang在64位系
- redis批量删除带空格的key
bylijinnan
redis
redis批量删除的通常做法:
redis-cli keys "blacklist*" | xargs redis-cli del
上面的命令在key的前后没有空格时是可以的,但有空格就不行了:
$redis-cli keys "blacklist*"
1) "blacklist:12:
[email protected]
- oracle正则表达式的用法
0624chenhong
oracle正则表达式
方括号表达示
方括号表达式
描述
[[:alnum:]]
字母和数字混合的字符
[[:alpha:]]
字母字符
[[:cntrl:]]
控制字符
[[:digit:]]
数字字符
[[:graph:]]
图像字符
[[:lower:]]
小写字母字符
[[:print:]]
打印字符
[[:punct:]]
标点符号字符
[[:space:]]
- 2048源码(核心算法有,缺少几个anctionbar,以后补上)
不懂事的小屁孩
2048
2048游戏基本上有四部分组成,
1:主activity,包含游戏块的16个方格,上面统计分数的模块
2:底下的gridview,监听上下左右的滑动,进行事件处理,
3:每一个卡片,里面的内容很简单,只有一个text,记录显示的数字
4:Actionbar,是游戏用重新开始,设置等功能(这个在底下可以下载的代码里面还没有实现)
写代码的流程
1:设计游戏的布局,基本是两块,上面是分
- jquery内部链式调用机理
换个号韩国红果果
JavaScriptjquery
只需要在调用该对象合适(比如下列的setStyles)的方法后让该方法返回该对象(通过this 因为一旦一个函数称为一个对象方法的话那么在这个方法内部this(结合下面的setStyles)指向这个对象)
function create(type){
var element=document.createElement(type);
//this=element;
- 你订酒店时的每一次点击 背后都是NoSQL和云计算
蓝儿唯美
NoSQL
全球最大的在线旅游公司Expedia旗下的酒店预订公司,它运营着89个网站,跨越68个国家,三年前开始实验公有云,以求让客户在预订网站上查询假期酒店时得到更快的信息获取体验。
云端本身是用于驱动网站的部分小功能的,如搜索框的自动推荐功能,还能保证处理Hotels.com服务的季节性需求高峰整体储能。
Hotels.com的首席技术官Thierry Bedos上个月在伦敦参加“2015 Clou
- java笔记1
a-john
java
1,面向对象程序设计(Object-oriented Propramming,OOP):java就是一种面向对象程序设计。
2,对象:我们将问题空间中的元素及其在解空间中的表示称为“对象”。简单来说,对象是某个类型的实例。比如狗是一个类型,哈士奇可以是狗的一个实例,也就是对象。
3,面向对象程序设计方式的特性:
3.1 万物皆为对象。
- C语言 sizeof和strlen之间的那些事 C/C++软件开发求职面试题 必备考点(一)
aijuans
C/C++求职面试必备考点
找工作在即,以后决定每天至少写一个知识点,主要是记录,逼迫自己动手、总结加深印象。当然如果能有一言半语让他人收益,后学幸运之至也。如有错误,还希望大家帮忙指出来。感激不尽。
后学保证每个写出来的结果都是自己在电脑上亲自跑过的,咱人笨,以前学的也半吊子。很多时候只能靠运行出来的结果再反过来
- 程序员写代码时就不要管需求了吗?
asia007
程序员不能一味跟需求走
编程也有2年了,刚开始不懂的什么都跟需求走,需求是怎样就用代码实现就行,也不管这个需求是否合理,是否为较好的用户体验。当然刚开始编程都会这样,但是如果有了2年以上的工作经验的程序员只知道一味写代码,而不在写的过程中思考一下这个需求是否合理,那么,我想这个程序员就只能一辈写敲敲代码了。
我的技术不是很好,但是就不代
- Activity的四种启动模式
百合不是茶
android栈模式启动Activity的标准模式启动栈顶模式启动单例模式启动
android界面的操作就是很多个activity之间的切换,启动模式决定启动的activity的生命周期 ;
启动模式xml中配置
<activity android:name=".MainActivity" android:launchMode="standard&quo
- Spring中@Autowired标签与@Resource标签的区别
bijian1013
javaspring@Resource@Autowired@Qualifier
Spring不但支持自己定义的@Autowired注解,还支持由JSR-250规范定义的几个注解,如:@Resource、 @PostConstruct及@PreDestroy。
1. @Autowired @Autowired是Spring 提供的,需导入 Package:org.springframewo
- Changes Between SOAP 1.1 and SOAP 1.2
sunjing
ChangesEnableSOAP 1.1SOAP 1.2
JAX-WS
SOAP Version 1.2 Part 0: Primer (Second Edition)
SOAP Version 1.2 Part 1: Messaging Framework (Second Edition)
SOAP Version 1.2 Part 2: Adjuncts (Second Edition)
Which style of WSDL
- 【Hadoop二】Hadoop常用命令
bit1129
hadoop
以Hadoop运行Hadoop自带的wordcount为例,
hadoop脚本位于/home/hadoop/hadoop-2.5.2/bin/hadoop,需要说明的是,这些命令的使用必须在Hadoop已经运行的情况下才能执行
Hadoop HDFS相关命令
hadoop fs -ls
列出HDFS文件系统的第一级文件和第一级
- java异常处理(初级)
白糖_
javaDAOspring虚拟机Ajax
从学习到现在从事java开发一年多了,个人觉得对java只了解皮毛,很多东西都是用到再去慢慢学习,编程真的是一项艺术,要完成一段好的代码,需要懂得很多。
最近项目经理让我负责一个组件开发,框架都由自己搭建,最让我头疼的是异常处理,我看了一些网上的源码,发现他们对异常的处理不是很重视,研究了很久都没有找到很好的解决方案。后来有幸看到一个200W美元的项目部分源码,通过他们对异常处理的解决方案,我终
- 记录整理-工作问题
braveCS
工作
1)那位同学还是CSV文件默认Excel打开看不到全部结果。以为是没写进去。同学甲说文件应该不分大小。后来log一下原来是有写进去。只是Excel有行数限制。那位同学进步好快啊。
2)今天同学说写文件的时候提示jvm的内存溢出。我马上反应说那就改一下jvm的内存大小。同学说改用分批处理了。果然想问题还是有局限性。改jvm内存大小只能暂时地解决问题,以后要是写更大的文件还是得改内存。想问题要长远啊
- org.apache.tools.zip实现文件的压缩和解压,支持中文
bylijinnan
apache
刚开始用java.util.Zip,发现不支持中文(网上有修改的方法,但比较麻烦)
后改用org.apache.tools.zip
org.apache.tools.zip的使用网上有更简单的例子
下面的程序根据实际需求,实现了压缩指定目录下指定文件的方法
import java.io.BufferedReader;
import java.io.BufferedWrit
- 读书笔记-4
chengxuyuancsdn
读书笔记
1、JSTL 核心标签库标签
2、避免SQL注入
3、字符串逆转方法
4、字符串比较compareTo
5、字符串替换replace
6、分拆字符串
1、JSTL 核心标签库标签共有13个,
学习资料:http://www.cnblogs.com/lihuiyy/archive/2012/02/24/2366806.html
功能上分为4类:
(1)表达式控制标签:out
- [物理与电子]半导体教材的一个小问题
comsci
问题
各种模拟电子和数字电子教材中都有这个词汇-空穴
书中对这个词汇的解释是; 当电子脱离共价键的束缚成为自由电子之后,共价键中就留下一个空位,这个空位叫做空穴
我现在回过头翻大学时候的教材,觉得这个
- Flashback Database --闪回数据库
daizj
oracle闪回数据库
Flashback 技术是以Undo segment中的内容为基础的, 因此受限于UNDO_RETENTON参数。要使用flashback 的特性,必须启用自动撤销管理表空间。
在Oracle 10g中, Flash back家族分为以下成员: Flashback Database, Flashback Drop,Flashback Query(分Flashback Query,Flashbac
- 简单排序:插入排序
dieslrae
插入排序
public void insertSort(int[] array){
int temp;
for(int i=1;i<array.length;i++){
temp = array[i];
for(int k=i-1;k>=0;k--)
- C语言学习六指针小示例、一维数组名含义,定义一个函数输出数组的内容
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int * p; //等价于 int *p 也等价于 int* p;
int i = 5;
char ch = 'A';
//p = 5; //error
//p = &ch; //error
//p = ch; //error
p = &i; //
- centos下php redis扩展的安装配置3种方法
dcj3sjt126com
redis
方法一
1.下载php redis扩展包 代码如下 复制代码
#wget http://redis.googlecode.com/files/redis-2.4.4.tar.gz
2 tar -zxvf 解压压缩包,cd /扩展包 (进入扩展包然后 运行phpize 一下是我环境中phpize的目录,/usr/local/php/bin/phpize (一定要
- 线程池(Executors)
shuizhaosi888
线程池
在java类库中,任务执行的主要抽象不是Thread,而是Executor,将任务的提交过程和执行过程解耦
public interface Executor {
void execute(Runnable command);
}
public class RunMain implements Executor{
@Override
pub
- openstack 快速安装笔记
haoningabc
openstack
前提是要配置好yum源
版本icehouse,操作系统redhat6.5
最简化安装,不要cinder和swift
三个节点
172 control节点keystone glance horizon
173 compute节点nova
173 network节点neutron
control
/etc/sysctl.conf
net.ipv4.ip_forward =
- 从c面向对象的实现理解c++的对象(二)
jimmee
C++面向对象虚函数
1. 类就可以看作一个struct,类的方法,可以理解为通过函数指针的方式实现的,类对象分配内存时,只分配成员变量的,函数指针并不需要分配额外的内存保存地址。
2. c++中类的构造函数,就是进行内存分配(malloc),调用构造函数
3. c++中类的析构函数,就时回收内存(free)
4. c++是基于栈和全局数据分配内存的,如果是一个方法内创建的对象,就直接在栈上分配内存了。
专门在
- 如何让那个一个div可以拖动
lingfeng520240
html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml
- 第10章 高级事件(中)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 计算两个经纬度之间的距离
roadrunners
计算纬度LBS经度距离
要解决这个问题的时候,到网上查了很多方案,最后计算出来的都与百度计算出来的有出入。下面这个公式计算出来的距离和百度计算出来的距离是一致的。
/**
*
* @param longitudeA
* 经度A点
* @param latitudeA
* 纬度A点
* @param longitudeB
*
- 最具争议的10个Java话题
tomcat_oracle
java
1、Java8已经到来。什么!? Java8 支持lambda。哇哦,RIP Scala! 随着Java8 的发布,出现很多关于新发布的Java8是否有潜力干掉Scala的争论,最终的结论是远远没有那么简单。Java8可能已经在Scala的lambda的包围中突围,但Java并非是函数式编程王位的真正觊觎者。
2、Java 9 即将到来
Oracle早在8月份就发布
- zoj 3826 Hierarchical Notation(模拟)
阿尔萨斯
rar
题目链接:zoj 3826 Hierarchical Notation
题目大意:给定一些结构体,结构体有value值和key值,Q次询问,输出每个key值对应的value值。
解题思路:思路很简单,写个类词法的递归函数,每次将key值映射成一个hash值,用map映射每个key的value起始终止位置,预处理完了查询就很简单了。 这题是最后10分钟出的,因为没有考虑value为{}的情