- 从零开始理解零样本学习:AI人工智能必学技术
AI天才研究院
AgenticAI实战AI人工智能与大数据AI大模型企业级应用开发实战ai
从零开始理解零样本学习:AI人工智能必学技术关键词:零样本学习、人工智能、机器学习、知识迁移、语义嵌入摘要:本文旨在全面深入地介绍零样本学习这一在人工智能领域具有重要意义的技术。首先阐述零样本学习的背景和基本概念,通过详细的解释和直观的示意图让读者建立起对零样本学习的初步认识。接着深入剖析其核心算法原理,结合Python代码进行详细说明,同时引入相关数学模型和公式并举例阐释。通过项目实战部分,带领
- Golang Fiber框架最佳实践:如何构建企业级应用
Golang编程笔记
Golang编程笔记Golang开发实战golang开发语言后端ai
GolangFiber框架最佳实践:如何构建企业级应用关键词:Golang、Fiber框架、企业级应用、最佳实践、Web开发摘要:本文聚焦于GolangFiber框架在企业级应用构建中的最佳实践。详细介绍了Fiber框架的背景、核心概念、算法原理、数学模型等基础知识,通过具体的代码案例展示了如何搭建开发环境、实现和解读源代码。同时探讨了Fiber框架在实际应用场景中的应用,推荐了相关的学习资源、开
- 深入研究 Golang 领域的 Fiber 框架架构
Golang编程笔记
golang架构网络ai
深入研究Golang领域的Fiber框架架构关键词:Golang、Fiber框架、架构、高性能、Web开发摘要:本文将深入探讨Golang领域的Fiber框架架构。我们会先介绍背景知识,包括目的、预期读者等。接着用通俗易懂的方式解释核心概念,如Fiber框架的各个组成部分,以及它们之间的关系。然后详细阐述核心算法原理、数学模型,通过实际代码案例展示其应用。还会介绍Fiber框架的实际应用场景、推荐
- 前端开发者必看:Node.js实战技巧大揭秘
大厂前端小白菜
前端开发实战node.jsvim编辑器ai
前端开发者必看:Node.js实战技巧大揭秘关键词:前端开发者、Node.js、实战技巧、模块化开发、性能优化、Express框架、Webpack摘要:本文专为前端开发者打造,旨在深入揭秘Node.js的实战技巧。首先介绍了Node.js的背景和对前端开发的重要性,接着详细阐述了Node.js的核心概念与联系、核心算法原理及具体操作步骤,通过数学模型和公式进一步加深理解。然后结合实际案例,从开发环
- 揭秘AI算力网络与通信中边缘计算的机器学习应用
揭秘AI算力网络与通信中边缘计算的机器学习应用关键词:AI算力网络、通信、边缘计算、机器学习、应用摘要:本文将深入探讨AI算力网络与通信中边缘计算的机器学习应用。我们会先介绍相关背景知识,接着解释核心概念,分析它们之间的关系,阐述核心算法原理和操作步骤,结合数学模型举例说明,通过项目实战展示代码实现与解读,探讨实际应用场景,推荐相关工具和资源,最后展望未来发展趋势与挑战。希望通过这篇文章,能让大家
- 通信感知如何优化AI算力网络的移动性管理?
AI算力网络与通信
人工智能网络phpai
通信感知如何优化AI算力网络的移动性管理?关键词:通信感知、AI算力网络、移动性管理、优化策略、技术融合摘要:本文围绕通信感知如何优化AI算力网络的移动性管理展开探讨。首先介绍了通信感知、AI算力网络和移动性管理的基本概念,接着深入分析了它们之间的关系以及通信感知在优化移动性管理中的作用原理。通过数学模型和具体代码案例,详细阐述了相关算法和实现步骤。同时,结合实际应用场景,探讨了这种优化方式的实际
- 分布式AI算力网络:架构设计与实现原理
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构分布式人工智能网络ai
分布式AI算力网络:架构设计与实现原理关键词:分布式AI算力网络、架构设计、实现原理、AI计算、网络协同摘要:本文深入探讨了分布式AI算力网络的架构设计与实现原理。首先介绍了其背景知识,接着以通俗易懂的方式解释了核心概念及它们之间的关系,阐述了核心算法原理与操作步骤,包含数学模型和公式,通过项目实战展示代码实现,分析了实际应用场景,推荐了相关工具和资源,探讨了未来发展趋势与挑战。旨在帮助读者全面理
- 大数据领域数据工程的消息中间件选型
大数据洞察
大数据与AI人工智能大数据ai
大数据领域数据工程的消息中间件选型关键词:消息中间件、数据工程、大数据处理、选型标准、分布式系统、实时数据流、可靠性保障摘要:在大数据领域的数据工程实践中,消息中间件是构建高可靠、高可扩展数据管道的核心组件。本文从技术架构、功能需求、应用场景等维度,系统解析消息中间件选型的关键要素。通过对比Kafka、Pulsar、RabbitMQ、RocketMQ等主流中间件的技术特性,结合数学模型分析吞吐量、
- Kubernetes在混合云平台中的应用:跨云容器编排实战
AI云原生与云计算技术学院
AI云原生与云计算kubernetes容器云原生ai
Kubernetes在混合云平台中的应用:跨云容器编排实战关键词:Kubernetes,混合云平台,跨云容器编排,容器化,云原生摘要:本文围绕Kubernetes在混合云平台中的应用展开,详细阐述了跨云容器编排的相关技术。首先介绍了混合云及Kubernetes的背景知识,接着深入剖析Kubernetes跨云容器编排的核心概念与架构,讲解了相关算法原理和操作步骤,并通过数学模型进行了理论分析。通过具
- Open AI在AI人工智能领域的量子计算结合探索
AI大模型应用工坊
人工智能量子计算ai
OpenAI在AI人工智能领域的量子计算结合探索关键词:OpenAI、人工智能、量子计算、结合探索、技术融合摘要:本文深入探讨了OpenAI在人工智能领域与量子计算的结合探索。首先介绍了研究的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了人工智能和量子计算的核心概念及其联系,分析了结合的原理。详细讲解了相关的核心算法原理,并用Python代码进行了示例。探讨了其中涉及的数学模型和公式。通
- 云原生SLO与AIOps的完美结合:智能运维新趋势
AI云原生与云计算技术学院
云原生ai
云原生SLO与AIOps的完美结合:智能运维新趋势关键词:云原生、SLO、AIOps、智能运维、服务等级目标、自动化运维、机器学习摘要:本文深入探讨云原生环境下服务等级目标(SLO)与智能运维(AIOps)的融合实践。通过解析SLO的核心原理与AIOps的技术架构,揭示两者在指标定义、异常检测、自动化修复等环节的协同机制。结合具体算法实现、数学模型分析与项目实战案例,展示如何通过数据驱动的智能运维
- 软件工程领域敏捷开发的人工智能应用探索
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构软件工程敏捷流程人工智能ai
软件工程领域敏捷开发的人工智能应用探索关键词:敏捷开发、人工智能、软件工程、自动化测试、智能代码生成、需求分析、DevOps摘要:本文深入探讨了人工智能技术在敏捷软件开发中的应用前景和实践方法。我们将从敏捷开发的核心原则出发,分析AI如何增强和优化敏捷流程中的各个环节,包括需求分析、任务规划、代码生成、测试自动化和持续交付。文章将提供具体的技术实现方案、数学模型和实际案例,帮助读者理解AI如何赋能
- AI人工智能领域回归:实现技术与服务的深度融合
AI学长带你学AI
人工智能回归数据挖掘ai
AI人工智能领域回归:实现技术与服务的深度融合关键词:AI人工智能、技术与服务融合、回归、实现路径、应用场景摘要:本文聚焦于AI人工智能领域中技术与服务深度融合的回归趋势。首先介绍了这一趋势的背景,包括目的、预期读者和文档结构。接着阐述了相关核心概念及联系,通过流程图清晰展示。详细讲解了核心算法原理并给出Python代码示例,还介绍了相关数学模型和公式。通过项目实战,从开发环境搭建到代码实现与解读
- 深入理解AI人工智能深度学习的原理架构
AI学长带你学AI
人工智能深度学习ai
深入理解AI人工智能深度学习的原理架构关键词:人工智能、深度学习、原理架构、神经网络、数学模型摘要:本文旨在深入剖析AI人工智能深度学习的原理架构。首先介绍了深度学习的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了深度学习的核心概念,如神经网络、激活函数等,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理,如反向传播算法,并给出Python代码示例。同时,介绍了深度学习中的数学
- MapReduce原理详解:大数据处理的基石与实战应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶mapreduce大数据ai
MapReduce原理详解:大数据处理的基石与实战应用关键词:MapReduce、大数据处理、原理、算法、实战应用摘要:本文深入探讨了MapReduce这一在大数据处理领域具有基石地位的技术。首先介绍了MapReduce的背景,包括其目的、适用读者、文档结构和相关术语。接着详细阐述了核心概念、算法原理、数学模型,通过Python代码进行了算法的详细说明。然后给出了项目实战案例,从开发环境搭建到代码
- Python NumPy数组:科学计算的核心数据类型
Python编程之道
pythonnumpy开发语言ai
PythonNumPy数组:科学计算的核心数据类型关键词:Python、NumPy数组、科学计算、数据类型、多维数组摘要:本文主要围绕Python中的NumPy数组展开,详细介绍了NumPy数组这一科学计算核心数据类型的相关知识。我们会从背景知识入手,用生动形象的方式解释NumPy数组的核心概念,深入探讨其算法原理、数学模型,还会通过项目实战展示其实际应用,最后展望其未来发展趋势。通过阅读本文,读
- Python 中 Matplotlib 绘制面积图的秘籍
Python编程之道
Python人工智能与大数据Python编程之道pythonmatplotlib开发语言ai
Python中Matplotlib绘制面积图的秘籍关键词:Python、Matplotlib、面积图、数据可视化、绘图秘籍摘要:本文深入探讨了在Python中使用Matplotlib库绘制面积图的相关技巧和方法。首先介绍了绘制面积图的背景和重要性,随后详细讲解了面积图的核心概念、绘制的算法原理以及具体操作步骤。通过数学模型和公式进一步阐释了面积图背后的原理,并结合实际项目案例进行代码实现和解读。此
- 解析Midjourney在AI人工智能图像生成的优势特色
AI大模型应用实战
midjourney人工智能ai
解析Midjourney在AI人工智能图像生成的优势特色关键词:Midjourney、AI人工智能图像生成、优势特色、图像质量、创意表达摘要:本文旨在深入解析Midjourney在AI人工智能图像生成领域的优势特色。通过对Midjourney的背景介绍、核心概念剖析、算法原理阐述、数学模型分析、实际案例展示、应用场景探讨、工具资源推荐等多方面的研究,全面揭示其在图像生成方面的独特优势,为相关从业者
- 大数据领域数据工程的版本控制策略
AGI大模型与大数据研究院
大数据elasticsearch搜索引擎ai
大数据领域数据工程的版本控制策略关键词:大数据工程、数据版本控制、Git、DeltaLake、MLflow、数据血缘、数据治理摘要:本文深入探讨大数据环境下的数据版本控制策略,从传统代码版本控制工具(Git)的局限性出发,分析大数据场景特有的版本控制挑战。文章系统介绍DeltaLake、MLflow等专业数据版本控制工具的原理和实现,详细讲解数据版本控制的数学模型和操作流程,并通过实际案例展示如何
- Python pip批量安装包的技巧
Python编程之道
ai
Pythonpip批量安装包的技巧关键词:Python、pip、批量安装包、技巧、requirements.txt摘要:在Python开发过程中,我们经常需要安装多个第三方库。手动逐个安装不仅效率低下,还容易出错。本文将深入探讨Pythonpip批量安装包的各种技巧,详细介绍核心概念、算法原理、数学模型(在批量安装场景下主要是简单逻辑)、实际案例以及相关工具和资源推荐等内容,帮助开发者提高包安装的
- 前端领域RESTful API的性能优化技巧大全
前端视界
前端艺匠馆前端restful性能优化ai
前端领域RESTfulAPI的性能优化技巧大全关键词:RESTfulAPI、性能优化、前端开发、HTTP缓存、数据压缩、分页查询、连接管理、熔断机制摘要:本文系统梳理前端场景下RESTfulAPI性能优化的核心技术体系,从架构设计、网络传输、数据处理、客户端优化四个维度展开,结合HTTP协议原理、缓存策略、压缩算法、分页机制等关键技术,通过具体代码示例和数学模型分析,提供完整的优化实施路径。涵盖开
- React.js前端开发中的性能优化的常见挑战与解决思路
大厂前端小白菜
前端开发实战react.js性能优化前端
React.js前端开发中的性能优化的常见挑战与解决思路关键词:React性能优化、虚拟DOM、重新渲染、代码分割、内存管理摘要:本文深入探讨React应用开发中常见的性能瓶颈及其解决方案。从虚拟DOM原理到Fiber架构演进,从组件渲染机制到内存泄漏预防,通过算法解析、数学模型验证和实战案例,系统性地构建React应用性能优化知识体系。本文还将提供可落地的性能检测工具链和最佳实践方案。文章目录R
- 腾讯云 vs 阿里云:2024年主流云平台全方位对比
AI天才研究院
AI人工智能与大数据腾讯云阿里云perlai
腾讯云vs阿里云:2024年主流云平台全方位对比关键词:腾讯云、阿里云、云计算、云平台对比、基础设施、服务生态、行业解决方案、成本优化、混合云架构摘要:本文针对2024年腾讯云与阿里云两大主流云平台,从技术架构、服务生态、行业解决方案、成本模型、安全合规等维度进行全方位对比分析。通过基础设施布局、核心产品矩阵、典型应用场景的深度拆解,结合具体代码案例和数学模型,揭示两者的技术差异与市场定位。文章还
- 深度解析:FreeRTOS在ESP32S3双核架构下的抢占式调度机制与性能优化策略
SlientICE
架构性能优化嵌入式硬件单片机
FreeRTOS在ESP32S3上的作用之进程调度文章总结(帮你们节约时间)FreeRTOS的抢占式调度机制让ESP32S3能够实现真正的多任务并发,通过优先级和时间片轮转确保系统响应性和公平性。ESP32S3双核架构下的SMP调度实现了任务在两个CPU核心间的智能分配,通过负载均衡和核间同步机制最大化系统性能。任务调度器通过精密的数学模型和算法,能够在微秒级别内完成上下文切换,为嵌入式系统提供了
- 人工神经网络:架构原理与技术解析
weixin_47233946
架构
##引言在深度学习和人工智能领域,人工神经网络(ArtificialNeuralNetwork,ANN)作为模拟人脑认知机制的核心技术,已在图像识别、自然语言处理和强化学习等领域实现了革命性突破。从AlphaGo击败人类顶尖棋手到ChatGPT的对话生成能力,ANN的进化持续推动技术边界的扩展。本文将深入剖析人工神经网络的核心原理、技术实现与发展趋势。##一、基础概念与数学模型###1.1生物启发
- 软件工程领域AI评测:质量控制的有效手段
软件工程实践
软件工程最佳实践AI软件构建大数据系统架构软件工程人工智能ai
软件工程领域AI评测:质量控制的有效手段关键词:软件工程、AI评测、质量控制、软件测试、人工智能摘要:本文深入探讨了软件工程领域中AI评测作为质量控制有效手段的相关内容。首先介绍了软件工程质量控制的背景和AI评测的重要性,阐述了AI评测的核心概念与原理,包括其与传统评测方式的联系和区别。详细讲解了AI评测的核心算法原理,并通过Python代码进行示例。分析了AI评测背后的数学模型和公式,同时给出实
- 软件工程领域AI评测:提升软件竞争力的秘诀
软件工程实践
软件工程人工智能ai
软件工程领域AI评测:提升软件竞争力的秘诀关键词:软件工程、AI评测、软件竞争力、评测指标、评测方法摘要:本文聚焦于软件工程领域的AI评测,旨在探讨如何通过有效的AI评测提升软件的竞争力。首先介绍了软件工程领域AI评测的背景,包括目的、预期读者和文档结构等。接着阐述了AI评测的核心概念与联系,分析了其核心算法原理和具体操作步骤,同时给出了相关的数学模型和公式。通过项目实战展示了AI评测在实际中的应
- AI人工智能目标检测在体育赛事中的应用
AI大模型应用之禅
人工智能目标检测计算机视觉ai
AI人工智能目标检测在体育赛事中的应用关键词:目标检测、计算机视觉、深度学习、体育分析、YOLO、运动员追踪、比赛统计摘要:本文深入探讨了AI目标检测技术在体育赛事中的创新应用。我们将从计算机视觉基础出发,详细分析目标检测的核心算法原理,特别是YOLO系列模型在运动员和球类追踪中的实现方式。文章包含完整的数学模型解释、Python实战项目演示,以及在实际体育场景中的应用案例分析。最后,我们展望了这
- AI原生应用架构设计:如何优雅地集成LLM到现有系统
AGI大模型与大数据研究院
AI-native网络ai
AI原生应用架构设计:如何优雅地集成LLM到现有系统关键词:AI原生应用、架构设计、大语言模型(LLM)、系统集成、优雅集成摘要:本文主要探讨了在AI原生应用架构设计中,如何将大语言模型(LLM)优雅地集成到现有系统。首先介绍了相关背景知识,包括目的、预期读者等;接着解释了核心概念,如LLM、系统集成等,并阐述了它们之间的关系;然后详细讲解了核心算法原理、数学模型和公式;通过项目实战给出代码实际案
- 操作系统兼容性创新:鸿蒙原子化服务开发指南
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
操作系统兼容性创新:鸿蒙原子化服务开发指南关键词:鸿蒙系统、原子化服务、跨平台开发、操作系统兼容性、分布式架构、轻量化应用、微内核架构摘要:本文深入解析鸿蒙生态的核心创新——原子化服务的开发原理与实践方法,系统阐述其如何通过轻量化设计、分布式调度和动态适配机制突破传统操作系统兼容性瓶颈。结合鸿蒙微内核架构与分布式软总线技术,详细讲解原子化服务的核心概念、开发流程、数学模型及实战案例,帮助开发者掌握
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo