【实战】基于OpenCv的SVM实现车牌检测与识别(二)

这期继续分享SVM实践项目:车牌检测与识别,同时也介绍一些干货

回顾一下,上期介绍了OpenCv的SVM模型训练,这期继续介绍一下识别过程【实战】基于OpenCv的SVM实现车牌检测与识别(二)_第1张图片

这幅流程图还是很经典,直观的。

我们先分享一下上期说的:
【实战】基于OpenCv的SVM实现车牌检测与识别(二)_第2张图片

OpenCv的中文显示方法

我使用的是PIL的显示方法,下面简介一下教程:

1字体simhei.ttf需要下载,然后在font = ImageFont.truetype("./simhei.ttf", 20, encoding=“utf-8”)指定simhei.ttf的路径即可 ,同样的需要把这个字体放在的路径找到或者放在运行代码同级,都行。

2: 中文编码为utf-8。否则中文会显示为矩形。str1 = str1.decode(‘utf-8’)

3:上代码:

from PIL import Image, ImageDraw, ImageFont
import cv2
import numpy as np

# cv2读取图片
img = cv2.imread(r'C:\Users\acer\Desktop\black.jpg')  # 名称不能有汉字
cv2img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2和PIL中颜色的hex码的储存顺序不同
pilimg = Image.fromarray(cv2img)

# PIL图片上打印汉字
draw = ImageDraw.Draw(pilimg)  # 图片上打印
font = ImageFont.truetype("simhei.ttf", 20, encoding="utf-8")  # 参数1:字体文件路径,参数2:字体大小
draw.text((0, 0), "Hi", 1.8, (255, 0, 0), font=font)  # 参数1:打印坐标,参数2:文本,参数3:字体颜色,参数4:字体

# PIL图片转cv2 图片
cv2charimg = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)
# cv2.imshow("图片", cv2charimg) # 汉字窗口标题显示乱码
cv2.imshow("photo", cv2charimg)

cv2.waitKey(0)
cv2.destroyAllWindows()

值得注意的是:
1)opencv读取图像后图像颜色通道是BGR排列的,而PIL读取的图像是RGB排列的。要注意图像颜色通道排列的转化cv2.cvtColor(img, cv2.COLOR_BGR2RGB)。

2)opencv读取完图像存储格式是numpy。PIL是自己定义的格式。要调用PIL的方法需要先将numpy转为自己的格式。pilimg = Image.fromarray(cv2img)。相反,PIL处理完后,调用opencv方法要将格式转回numpy。

cv2charimg = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)。

不转的话会报错。TypeError: Expected cv::UMat for argument ‘src’

还有一种常用的:freetype方式:

同样的先下载字体:比如上面的simhei.ttf,同样的还有msyh.ttf(这些百度就行,很多):

#-*- coding: utf-8 -*-
import cv2
import ft2
 
img = cv2.imread('pic_url.jpg')
line = '你好'
 
color = (0, 255, 0)  # Green
pos = (3, 3)
text_size = 24
 
# ft = put_chinese_text('wqy-zenhei.ttc')
ft = ft2.put_chinese_text('msyh.ttf')
image = ft.draw_text(img, pos, line, text_size, color)
 
name = u'图片展示'
 
cv2.imshow(name, image)
cv2.waitKey(0)

个人推荐第一种!


接下来继续车牌检测~

查找图像边缘整体形成的矩形区域,可能有很多,车牌就在其中一个矩形区域中(这也是程序or算法的不足之处不过,并不影响结果)

		try:
			contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		except ValueError:
			image, contours, hierarchy = cv2.findContours(img_edge2, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
		contours = [cnt for cnt in contours if cv2.contourArea(cnt) > Min_Area]

需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图!

结果筛选(原因是上述的多可能性情况):

car_contours = []
		for cnt in contours:
			rect = cv2.minAreaRect(cnt)
			area_width, area_height = rect[1]
			if area_width < area_height:
				area_width, area_height = area_height, area_width
			wh_ratio = area_width / area_height
			#print(wh_ratio)
			#要求矩形区域长宽比在2到5.5之间,2到5.5是车牌的长宽比,其余的矩形排除
			if wh_ratio > 2 and wh_ratio < 5.5:
				car_contours.append(rect)
				box = cv2.boxPoints(rect)
				box = np.int0(box)

接下来:

矩形区域可能是倾斜的矩形,需要矫正,以便使用颜色定位

		
		for rect in car_contours:
			if rect[2] > -1 and rect[2] < 1:#创造角度,使得左、高、右、低拿到正确的值
				angle = 1
			else:
				angle = rect[2]
			rect = (rect[0], (rect[1][0]+5, rect[1][1]+5), angle)#扩大范围,避免车牌边缘被排除

			box = cv2.boxPoints(rect)
			heigth_point = right_point = [0, 0]
			left_point = low_point = [pic_width, pic_hight]
			for point in box:
				if left_point[0] > point[0]:
					left_point = point
				if low_point[1] > point[1]:
					low_point = point
				if heigth_point[1] < point[1]:
					heigth_point = point
				if right_point[0] < point[0]:
					right_point = point

			if left_point[1] <= right_point[1]:#正角度
				new_right_point = [right_point[0], heigth_point[1]]
				pts2 = np.float32([left_point, heigth_point, new_right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(new_right_point)
				point_limit(heigth_point)
				point_limit(left_point)
				card_img = dst[int(left_point[1]):int(heigth_point[1]), int(left_point[0]):int(new_right_point[0])]
				card_imgs.append(card_img)

			elif left_point[1] > right_point[1]:#负角度
				
				new_left_point = [left_point[0], heigth_point[1]]
				pts2 = np.float32([new_left_point, heigth_point, right_point])#字符只是高度需要改变
				pts1 = np.float32([left_point, heigth_point, right_point])
				M = cv2.getAffineTransform(pts1, pts2)
				dst = cv2.warpAffine(oldimg, M, (pic_width, pic_hight))
				point_limit(right_point)
				point_limit(heigth_point)
				point_limit(new_left_point)
				card_img = dst[int(right_point[1]):int(heigth_point[1]), int(new_left_point[0]):int(right_point[0])]
				card_imgs.append(card_img)

开始使用颜色定位,排除不是车牌的矩形,目前只识别蓝、绿、黄车牌

		colors = []
		for card_index,card_img in enumerate(card_imgs):
			green = yello = blue = black = white = 0
			card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
			#有转换失败的可能,原因来自于上面矫正矩形出错
			if card_img_hsv is None:
				continue
			row_num, col_num= card_img_hsv.shape[:2]
			card_img_count = row_num * col_num

			for i in range(row_num):
				for j in range(col_num):
					H = card_img_hsv.item(i, j, 0)
					S = card_img_hsv.item(i, j, 1)
					V = card_img_hsv.item(i, j, 2)
					if 11 < H <= 34 and S > 34:#图片分辨率调整
						yello += 1
					elif 35 < H <= 99 and S > 34:#图片分辨率调整
						green += 1
					elif 99 < H <= 124 and S > 34:#图片分辨率调整
						blue += 1
					
					if 0 < H <180 and 0 < S < 255 and 0 < V < 46:
						black += 1
					elif 0 < H <180 and 0 < S < 43 and 221 < V < 225:
						white += 1
			color = "no"

			limit1 = limit2 = 0
			if yello*2 >= card_img_count:
				color = "yello"
				limit1 = 11
				limit2 = 34#有的图片有色偏偏绿
			elif green*2 >= card_img_count:
				color = "green"
				limit1 = 35
				limit2 = 99
			elif blue*2 >= card_img_count:
				color = "blue"
				limit1 = 100
				limit2 = 124#有的图片有色偏偏紫
			elif black + white >= card_img_count*0.7:#TODO
				color = "bw"
			print(color)
			colors.append(color)
			print(blue, green, yello, black, white, card_img_count)
			cv2.imshow("color", card_img)
			cv2.waitKey(1110)
			if limit1 == 0:
				continue
			#以上为确定车牌颜色
			#以下为根据车牌颜色再定位,缩小边缘非车牌边界
			xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
			if yl == yh and xl == xr:
				continue
			need_accurate = False
			if yl >= yh:
				yl = 0
				yh = row_num
				need_accurate = True
			if xl >= xr:
				xl = 0
				xr = col_num
				need_accurate = True
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]
			if need_accurate:#可能x或y方向未缩小,需要再试一次
				card_img = card_imgs[card_index]
				card_img_hsv = cv2.cvtColor(card_img, cv2.COLOR_BGR2HSV)
				xl, xr, yh, yl = self.accurate_place(card_img_hsv, limit1, limit2, color)
				print('size', xl,xr,yh,yl)
				if yl == yh and xl == xr:
					continue
				if yl >= yh:
					yl = 0
					yh = row_num
				if xl >= xr:
					xl = 0
					xr = col_num
			card_imgs[card_index] = card_img[yl:yh, xl:xr] if color != "green" or yl < (yh-yl)//4 else card_img[yl-(yh-yl)//4:yh, xl:xr]

上个表情防止兄弟看得睡着了

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-S7KZhD2C-1588726301558)(D:\CSDN\pic\车牌检测(二)\1588675986308.png)]


核心部分来了,详解一下:

predict_result = []
		roi = None
		card_color = None
		for i, color in enumerate(colors):
			if color in ("blue", "yello", "green"):
				card_img = card_imgs[i]
				gray_img = cv2.cvtColor(card_img, cv2.COLOR_BGR2GRAY)
				#黄、绿车牌字符比背景暗、与蓝车牌刚好相反,所以黄、绿车牌需要反向
				if color == "green" or color == "yello":
					gray_img = cv2.bitwise_not(gray_img)
				ret, gray_img = cv2.threshold(gray_img, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
				#查找水平直方图波峰
				x_histogram  = np.sum(gray_img, axis=1)
				x_min = np.min(x_histogram)
				x_average = np.sum(x_histogram)/x_histogram.shape[0]
				x_threshold = (x_min + x_average)/2
				wave_peaks = find_waves(x_threshold, x_histogram)
				if len(wave_peaks) == 0:
					print("peak less 0:")
					continue
				#认为水平方向,最大的波峰为车牌区域
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				gray_img = gray_img[wave[0]:wave[1]]
				#查找垂直直方图波峰
				row_num, col_num= gray_img.shape[:2]
				#去掉车牌上下边缘1个像素,避免白边影响阈值判断
				gray_img = gray_img[1:row_num-1]
				y_histogram = np.sum(gray_img, axis=0)
				y_min = np.min(y_histogram)
				y_average = np.sum(y_histogram)/y_histogram.shape[0]
				y_threshold = (y_min + y_average)/5#U和0要求阈值偏小,否则U和0会被分成两半

				wave_peaks = find_waves(y_threshold, y_histogram)

				#for wave in wave_peaks:
				#	cv2.line(card_img, pt1=(wave[0], 5), pt2=(wave[1], 5), color=(0, 0, 255), thickness=2) 
				#车牌字符数应大于6
				if len(wave_peaks) <= 6:
					print("peak less 1:", len(wave_peaks))
					continue
				
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				max_wave_dis = wave[1] - wave[0]
				#判断是否是左侧车牌边缘
				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
					wave_peaks.pop(0)
				
				#组合分离汉字
				cur_dis = 0
				for i,wave in enumerate(wave_peaks):
					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
						break
					else:
						cur_dis += wave[1] - wave[0]
				if i > 0:
					wave = (wave_peaks[0][0], wave_peaks[i][1])
					wave_peaks = wave_peaks[i+1:]
					wave_peaks.insert(0, wave)
				
				#去除车牌上的分隔点
				point = wave_peaks[2]
				if point[1] - point[0] < max_wave_dis/3:
					point_img = gray_img[:,point[0]:point[1]]
					if np.mean(point_img) < 255/5:
						wave_peaks.pop(2)
				
				if len(wave_peaks) <= 6:
					print("peak less 2:", len(wave_peaks))
					continue
				part_cards = seperate_card(gray_img, wave_peaks)
				for i, part_card in enumerate(part_cards):
					#可能是固定车牌的铆钉
					if np.mean(part_card) < 255/5:
						print("a point")
						continue
					part_card_old = part_card
					w = abs(part_card.shape[1] - SZ)//2
					
					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
					
					#part_card = deskew(part_card)
					part_card = preprocess_hog([part_card])
					if i == 0:
						resp = self.modelchinese.predict(part_card)
						charactor = provinces[int(resp[0]) - PROVINCE_START]
					else:
						resp = self.model.predict(part_card)
						charactor = chr(resp[0])
					#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
					if charactor == "1" and i == len(part_cards)-1:
						if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
							continue
					predict_result.append(charactor)
				roi = card_img
				card_color = color
				break
				
		return predict_result, roi, card_color#识别到的字符、定位的车牌图像、车牌颜色

部分代码有注释,大致说说:

这是识别车牌中的字符

gray_img = cv2.bitwise_not(gray_img)

这个是掩膜方法,我们后续再统一介绍吧, 大致思路就是把原图中要放logo的区域抠出来,再把logo放进去就行了。

根据设定的阈值和图片直方图,找出波峰,用于分隔字符

def find_waves(threshold, histogram):
	up_point = -1#上升点
	is_peak = False
	if histogram[0] > threshold:
		up_point = 0
		is_peak = True
	wave_peaks = []
	for i,x in enumerate(histogram):
		if is_peak and x < threshold:
			if i - up_point > 2:
				is_peak = False
				wave_peaks.append((up_point, i))
		elif not is_peak and x >= threshold:
			is_peak = True
			up_point = i
	if is_peak and up_point != -1 and i - up_point > 4:
		wave_peaks.append((up_point, i))
	return wave_peaks

根据找出的波峰,分隔图片,从而得到逐个字符图片

def seperate_card(img, waves):
	part_cards = []
	for wave in waves:
		part_cards.append(img[:, wave[0]:wave[1]])
	return part_cards
def deskew(img):
	m = cv2.moments(img)
	if abs(m['mu02']) < 1e-2:
		return img.copy()
	skew = m['mu11']/m['mu02']
	M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
	img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
	return img

其中:

m = cv2.moments(img)

矩 计算 下期介绍

最后,结果筛选:

#车牌字符数应大于6
				if len(wave_peaks) <= 6:
					print("peak less 1:", len(wave_peaks))
					continue
				
				wave = max(wave_peaks, key=lambda x:x[1]-x[0])
				max_wave_dis = wave[1] - wave[0]
				#判断是否是左侧车牌边缘
				if wave_peaks[0][1] - wave_peaks[0][0] < max_wave_dis/3 and wave_peaks[0][0] == 0:
					wave_peaks.pop(0)
				
				#组合分离汉字
				cur_dis = 0
				for i,wave in enumerate(wave_peaks):
					if wave[1] - wave[0] + cur_dis > max_wave_dis * 0.6:
						break
					else:
						cur_dis += wave[1] - wave[0]
				if i > 0:
					wave = (wave_peaks[0][0], wave_peaks[i][1])
					wave_peaks = wave_peaks[i+1:]
					wave_peaks.insert(0, wave)
				
				#去除车牌上的分隔点
				point = wave_peaks[2]
				if point[1] - point[0] < max_wave_dis/3:
					point_img = gray_img[:,point[0]:point[1]]
					if np.mean(point_img) < 255/5:
						wave_peaks.pop(2)
				
				if len(wave_peaks) <= 6:
					print("peak less 2:", len(wave_peaks))
					continue
				part_cards = seperate_card(gray_img, wave_peaks)
				for i, part_card in enumerate(part_cards):
					#可能是固定车牌的铆钉
					if np.mean(part_card) < 255/5:
						print("a point")
						continue
					part_card_old = part_card
					w = abs(part_card.shape[1] - SZ)//2
					
					part_card = cv2.copyMakeBorder(part_card, 0, 0, w, w, cv2.BORDER_CONSTANT, value = [0,0,0])
					part_card = cv2.resize(part_card, (SZ, SZ), interpolation=cv2.INTER_AREA)
					
					#part_card = deskew(part_card)
					part_card = preprocess_hog([part_card])
					if i == 0:
						resp = self.modelchinese.predict(part_card)
						charactor = provinces[int(resp[0]) - PROVINCE_START]
					else:
						resp = self.model.predict(part_card)
						charactor = chr(resp[0])
					#判断最后一个数是否是车牌边缘,假设车牌边缘被认为是1
					if charactor == "1" and i == len(part_cards)-1:
						if part_card_old.shape[0]/part_card_old.shape[1] >= 7:#1太细,认为是边缘
							continue
					predict_result.append(charactor)
				roi = card_img
				card_color = color
				break
				
		return predict_result, roi, card_color

返回识别到的字符、定位的车牌图像、车牌颜色

main函数:

if __name__ == '__main__':
	c = CardPredictor()
	c.train_svm()
	r, roi, color = c.predict("test//car7.jpg")
	print(r, roi.shape[0],roi.shape[1],roi.shape[2])
	img = cv2.imread("test//car7.jpg")
	img = cv2.resize(img,(480,640),interpolation=cv2.INTER_LINEAR)
	r = ','.join(r)
	r = r.replace(',', '')
	print(r)

	from PIL import Image, ImageDraw, ImageFont
	cv2img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # cv2和PIL中颜色的hex码的储存顺序不同
	pilimg = Image.fromarray(cv2img)

	# PIL图片上打印汉字
	draw = ImageDraw.Draw(pilimg)  # 图片上打印
	font = ImageFont.truetype("simhei.ttf", 30, encoding="utf-8")  # 参数1:字体文件路径,参数2:字体大小
	draw.text((0, 0), r,  (255, 0, 0), font=font)  # 参数1:打印坐标,参数2:文本,参数3:字体颜色,参数4:字体

	# PIL图片转cv2 图片
	cv2charimg = cv2.cvtColor(np.array(pilimg), cv2.COLOR_RGB2BGR)
	# cv2.imshow("图片", cv2charimg) # 汉字窗口标题显示乱码
	cv2.imshow("photo", cv2charimg)

	cv2.waitKey(0)
	cv2.destroyAllWindows()

最后在此说明:代码非本人原创,来自朋友毕设,过段时间会开源请关注一下博主,谢谢

小结一下:

OPENCV的SVM的SVC训练模型——>OpenCv进行图像采集/控制摄像头——>图像预处理(二值化操作,边缘计算等)——>定位车牌位置,并正放置处理——>确定车牌颜色——>根据车牌颜色再定位,缩小边缘非车牌边界——>以下为识别车牌中的字符——>返回结果——>最后ptrdict返回识别到的字符、定位的车牌图像、车牌颜色——>结果显示,并使用PIL方法显示中文

最后我想说明的是,根据我找bug的能力,已经发现一堆bug,但是无可否认,这个机器学习项目已经写的很棒了,至少我短期不能达到这个效果,不过写出来还是没有太大困难,逻辑在,做就完了!另外,程序基于机器学习的SVM算法问题,以及在数据预处理上的优化问题 ,还是很欠缺的,最大的问题就是准确率问题,以及欠拟合问题,这两者是我这个项目的问题,换成深度学习会好很多!

上图,介绍下期内容:初识CVLIB 最后别忘了给博主一个赞和关注~,码字不易,一起进步!

【实战】基于OpenCv的SVM实现车牌检测与识别(二)_第3张图片

最后欢迎大家进入我的微信群学习交流,机器&深度学习技术交流群广结豪杰!大家一起进步,附上微信。
【实战】基于OpenCv的SVM实现车牌检测与识别(二)_第4张图片

上海第二工业大学智能科学与技术大二 周小夏(CV调包侠)

你可能感兴趣的:(视觉识别模块,机器学习,机器&深度学习项目实战,人工智能,计算机视觉,机器学习,图像识别,svm)