2012已经到来,无论这个世界是否行将毁灭,在那之前的日子还得要继续。
Android迈进了4.0,相应的Linux内核也进入了3.x时代。之后的一个工作估计要将2.6.32的驱动移植到3.x上面来。因此趁现在有空,看看alsa在这方面有什么改动。
总的来说,架构大的改动是不大可能的。codec中几个关键结构体没有大的变化,如snd_soc_dai_ops、snd_soc_dai_driver(相当于2.6.32中的snd_soc_dai),倒是以前的snd_soc_codec_device重定义为snd_soc_codec_driver,这个算是最明显的。
2.6.32:
/* codec device */
struct snd_soc_codec_device {
int (*probe)(struct platform_device *pdev);
int (*remove)(struct platform_device *pdev);
int (*suspend)(struct platform_device *pdev, pm_message_t state);
int (*resume)(struct platform_device *pdev);
};
/* codec driver */
struct snd_soc_codec_driver {
/* driver ops */
int (*probe)(struct snd_soc_codec *);
int (*remove)(struct snd_soc_codec *);
int (*suspend)(struct snd_soc_codec *,
pm_message_t state);
int (*resume)(struct snd_soc_codec *);
/* Default control and setup, added after probe() is run */
const struct snd_kcontrol_new *controls;
int num_controls;
const struct snd_soc_dapm_widget *dapm_widgets;
int num_dapm_widgets;
const struct snd_soc_dapm_route *dapm_routes;
int num_dapm_routes;
/* codec wide operations */
int (*set_sysclk)(struct snd_soc_codec *codec,
int clk_id, unsigned int freq, int dir);
int (*set_pll)(struct snd_soc_codec *codec, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out);
/* codec IO */
unsigned int (*read)(struct snd_soc_codec *, unsigned int);
int (*write)(struct snd_soc_codec *, unsigned int, unsigned int);
int (*display_register)(struct snd_soc_codec *, char *,
size_t, unsigned int);
int (*volatile_register)(struct snd_soc_codec *, unsigned int);
int (*readable_register)(struct snd_soc_codec *, unsigned int);
int (*writable_register)(struct snd_soc_codec *, unsigned int);
short reg_cache_size;
short reg_cache_step;
short reg_word_size;
const void *reg_cache_default;
short reg_access_size;
const struct snd_soc_reg_access *reg_access_default;
enum snd_soc_compress_type compress_type;
/* codec bias level */
int (*set_bias_level)(struct snd_soc_codec *,
enum snd_soc_bias_level level);
void (*seq_notifier)(struct snd_soc_dapm_context *,
enum snd_soc_dapm_type, int);
/* probe ordering - for components with runtime dependencies */
int probe_order;
int remove_order;
};
位于snd_soc_codec_driver中的一些codec IO成员函数和set_bias_level回调函数原来都放在另外一个结构体snd_soc_codec中,现在放置在这里了,这是根据源码结构调整的结果。事实真正需要设置的成员也不是很多,如下:
static struct snd_soc_codec_driver soc_codec_dev_wm9713 = {
.probe = wm9713_soc_probe,
.remove = wm9713_soc_remove,
.suspend = wm9713_soc_suspend,
.resume = wm9713_soc_resume,
.read = ac97_read,
.write = ac97_write,
.set_bias_level = wm9713_set_bias_level,
.reg_cache_size = ARRAY_SIZE(wm9713_reg),
.reg_word_size = sizeof(u16),
.reg_cache_step = 2,
.reg_cache_default = wm9713_reg,
.dapm_widgets = wm9713_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(wm9713_dapm_widgets),
.dapm_routes = wm9713_audio_map,
.num_dapm_routes = ARRAY_SIZE(wm9713_audio_map),
};
probe、remove、suspend、resume相信不用累述了,volatile_register函数判断指定的寄存器是否volatile,reg_cache_size一般为寄存器数目,reg_word_size为寄存器的字长,reg_cache_default为寄存器默认值配置表。
而dapm_widgets、dapm_routes就比较“犀利”了。之前的dapm widgets和routes分别通过函数snd_soc_dapm_new_controls和snd_soc_dapm_add_routes来注册的(当然现在还保留这些接口),现在则可以填入到这个结构体,在soc-core里注册,省了不少功夫:
static int soc_probe_codec(struct snd_soc_card *card,
struct snd_soc_codec *codec)
{
//...
if (driver->dapm_widgets)
snd_soc_dapm_new_controls(&codec->dapm, driver->dapm_widgets,
driver->num_dapm_widgets);
//...
if (driver->controls)
snd_soc_add_controls(codec, driver->controls,
driver->num_controls);
if (driver->dapm_routes)
snd_soc_dapm_add_routes(&codec->dapm, driver->dapm_routes,
driver->num_dapm_routes);
//...
}
同时可看到dirver ops的函数参数有所不同了,以前是struct platform_device *pdev,现在改为struct snd_soc_codec *codec,这个与codec的注册函数snd_soc_register_codec和设备的drvdata有关,之后会逐一分析。
对于snd_soc_codec_driver,之前需要EXPORT_SYMBOL_GPL(soc_codec_dev_wm9713),然后在其他地方注册,现在不用那么麻烦了:
static __devinit int wm9713_probe(struct platform_device *pdev)
{
return snd_soc_register_codec(&pdev->dev,
&soc_codec_dev_wm9713, wm9713_dai, ARRAY_SIZE(wm9713_dai));
}
随后像普通的platform设备那样注册就行了。不再需要snd_soc_new_pcms注册pcm、snd_soc_init_card注册card。
snd_soc_register_codec函数原型:
int snd_soc_register_codec(struct device *dev,
const struct snd_soc_codec_driver *codec_drv,
struct snd_soc_dai_driver *dai_drv, int num_dai);
其中snd_soc_dai_driver与之前的snd_soc_dai类似,没有特别需要注意的地方,初始化如:
static struct snd_soc_dai_driver wm9713_dai[] = {
{
.name = "wm9713-hifi",
.ac97_control = 1,
.playback = {
.stream_name = "HiFi Playback",
.channels_min = 1,
.channels_max = 2,
.rates = WM9713_RATES,
.formats = SND_SOC_STD_AC97_FMTS,},
.capture = {
.stream_name = "HiFi Capture",
.channels_min = 1,
.channels_max = 2,
.rates = WM9713_RATES,
.formats = SND_SOC_STD_AC97_FMTS,},
.ops = &wm9713_dai_ops_hifi,
},
//...
//...
};
注:之前的snd_soc_dai也需要EXPORT_SYMBOL_GPL的,然后在其他地方注册的,现在改进了这点,减少了export的symbol,代码架构更加清晰可靠。
在ALSA之CODEC分析中有提到“开始看到socdev = platform_get_drvdata(pdev)这句不免有点疑惑,到底pdev是在哪里初始化好了?”,这个pdev就是drvdata。这个东东非常重要,它一般包含codec自定义的私有数据,如控制接口类型(I2C/SPI/AC97)、fll_in(FLL input frequency)、fll_out(FLL output frequency)等信息。因为每种codec可能定义的私有数据体不同,而Linux内核喜欢抽象,所以就产生了drvdata。
之前drvdata的来龙去脉是百转千回绕吊瓶的,而现在版本是比较直观的,且看分析:
static inline void snd_soc_codec_set_drvdata(struct snd_soc_codec *codec,
void *data)
{
dev_set_drvdata(codec->dev, data);
}
static inline void *snd_soc_codec_get_drvdata(struct snd_soc_codec *codec)
{
return dev_get_drvdata(codec->dev);
}
soc.h里实现两个函数用于设置和获取drvdata。snd_soc_codec是codec驱动里最常使用的结构体,在各个操作函数均可以看到它的身影,所以选择它和drvdata联系起来。
使用方法如下:
static int wm9713_soc_probe(struct snd_soc_codec *codec)
{
struct wm9713_priv *wm9713;
int ret = 0, reg;
wm9713 = kzalloc(sizeof(struct wm9713_priv), GFP_KERNEL);
if (wm9713 == NULL)
return -ENOMEM;
snd_soc_codec_set_drvdata(codec, wm9713);
//...
}
static int wm9713_soc_remove(struct snd_soc_codec *codec)
{
struct wm9713_priv *wm9713 = snd_soc_codec_get_drvdata(codec);
snd_soc_free_ac97_codec(codec);
kfree(wm9713);
return 0;
}
这个函数在以前版本也有的,但是当时没有留意。现在发现这个函数很实用,只需要配置寄存器地址宽度、数据宽度、和控制接口类型,soc-io模块就自动会选择合适的控制接口函数。
/**
* snd_soc_codec_set_cache_io: Set up standard I/O functions.
*
* @codec: CODEC to configure.
* @addr_bits: Number of bits of register address data.
* @data_bits: Number of bits of data per register.
* @control: Control bus used.
*
* Register formats are frequently shared between many I2C and SPI
* devices. In order to promote code reuse the ASoC core provides
* some standard implementations of CODEC read and write operations
* which can be set up using this function.
*
* The caller is responsible for allocating and initialising the
* actual cache.
*
* Note that at present this code cannot be used by CODECs with
* volatile registers.
*/
int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
int addr_bits, int data_bits,
enum snd_soc_control_type control)
{
int i;
for (i = 0; i < ARRAY_SIZE(io_types); i++)
if (io_types[i].addr_bits == addr_bits &&
io_types[i].data_bits == data_bits)
break;
if (i == ARRAY_SIZE(io_types)) {
printk(KERN_ERR
"No I/O functions for %d bit address %d bit data\n",
addr_bits, data_bits);
return -EINVAL;
}
codec->write = io_types[i].write;
codec->read = hw_read;
codec->bulk_write_raw = snd_soc_hw_bulk_write_raw;
switch (control) {
case SND_SOC_I2C:
#if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
codec->hw_write = (hw_write_t)i2c_master_send;
#endif
if (io_types[i].i2c_read)
codec->hw_read = io_types[i].i2c_read;
codec->control_data = container_of(codec->dev,
struct i2c_client,
dev);
break;
case SND_SOC_SPI:
#ifdef CONFIG_SPI_MASTER
codec->hw_write = do_spi_write;
#endif
if (io_types[i].spi_read)
codec->hw_read = io_types[i].spi_read;
codec->control_data = container_of(codec->dev,
struct spi_device,
dev);
break;
}
return 0;
}
EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);