- 深度学习(1)-简单神经网络示例
yyc_audio
深度学习人工智能
我们来看一个神经网络的具体实例:使用Python的Keras库来学习手写数字分类。在这个例子中,我们要解决的问题是,将手写数字的灰度图像(28像素×28像素)划分到10个类别中(从0到9)。我们将使用MNIST数据集,图2-1给出了MNIST数据集的一些样本。在机器学习中,分类问题中的某个类别叫作类(class),数据点叫作样本(sample),与某个样本对应的类叫作标签(label)。你不需要现
- keras实现TCN网络层
谦虚且进步
深度学习预测keras人工智能深度学习
keras实现TCN网络层,keras3.0可用。fromkeras.layersimportLambda,Dense,Layer,Conv1DimporttensorflowastfclassTCNCell(Layer):"""sumary_line:Chinese:让输入的时间序列[bs,seql,dim]提升kernel_size倍的感受野English:Doublethereceptive
- 25、深度学习-自学之路-卷积神经网络基于MNIST数据集的程序展示
小宇爱
深度学习-自学之路深度学习cnn人工智能
importkeras#添加Keraskuimportsys,numpyasnpfromkeras.utilsimportnp_utilsimportosfromkeras.datasetsimportmnistprint("licheng:"+"20"+'\n')np.random.seed(1)(x_train,y_train),(x_test,y_test)=mnist.load_data(
- 【深度学习入门实战】基于Keras的手写数字识别实战(附完整可视化分析)
机器学习司猫白
深度学习深度学习keras人工智能机器学习python
本人主页:机器学习司猫白ok,话不多说,我们进入正题吧项目概述本案例使用经典的MNIST手写数字数据集,通过Keras构建全连接神经网络,实现0-9数字的分类识别。文章将包含:关键概念图解完整实现代码训练过程可视化模型效果深度分析环境准备importnumpyasnpimportmatplotlib.pyplotaspltfromtensorflowimportkerasfromtensorflo
- 深度学习 视频推荐
小赖同学啊
人工智能深度学习音视频人工智能
以下为你呈现一个基于深度学习实现视频推荐的简化代码示例。这里我们使用的是协同过滤思想结合神经网络的方式,借助TensorFlow和Keras库来构建模型。在这个示例中,假设已有用户对视频的评分数据,目标是预测用户对未评分视频的评分,进而为用户推荐可能感兴趣的视频。1.环境准备要确保你已经安装了必要的库,如numpy、pandas、tensorflow等,可以使用以下命令进行安装:pipinstal
- Python中LSTM算法的实现与应用
昊叔Crescdim
本文还有配套的精品资源,点击获取简介:本教程详细介绍了如何在Python编程环境下实现LSTM算法。首先解释了LSTM的工作原理,重点在于其门结构如何有效解决传统RNN的梯度问题,并通过控制信息流动以学习长期依赖。接着,教程以Keras库为例,逐步演示了安装库、数据预处理、模型构建、编译、训练、评估和预测等步骤。深入讲解了在序列数据处理如自然语言和时间序列预测任务中的实际应用,并提供了实践案例,强
- (python)如何看自己安装的包的版本
9677
Pythonpython开发语言
linuxpiplist|grep"numpy\|scipy\|tensorflow\|keras"windows环境下piplist|findstr"numpyscipytensorflowkeras"输出numpy1.13.1scipy0.19.1tensorflow-cpu2.4.0tensorflow-estimator2.4.0tensorflow-gpu2.4.0
- 深度学习-电商推荐
小赖同学啊
人工智能深度学习人工智能
下面为你介绍使用深度学习实现电商推荐系统的代码示例。我们将构建一个基于神经网络的简单推荐模型,以用户的历史购买行为和商品特征为基础,预测用户对商品的偏好。这里我们使用Python的TensorFlow和Keras库来实现。问题分析电商推荐系统的核心目标是根据用户的历史行为和商品特征,预测用户对未购买商品的喜好程度,从而为用户推荐可能感兴趣的商品。我们将通过构建一个神经网络模型,输入用户特征和商品特
- 【深度学习实战:kaggle自然场景的图像分类-----使用keras框架实现vgg16的迁移学习】
机器学习司猫白
深度学习分类keras
Hello大家好,今天和大家分享一个kaggle自然场景的图像分类的竞赛,使用的keras框架实现vgg16的迁移学习完成自然场景分类,对数据集感兴趣的同学可以在上方下载数据集。项目简介本次数据集来自kaggle,该数据集包括自然场景的图像。模型应该预测每个图像的正确标签。您的目标是实现分类问题的高精度。数据集train.csv-训练集test.csv-测试集SceneImages-图像文件夹训练
- python预测股票 keras_使用LSTM模型预测股价基于Keras
weixin_39862899
python预测股票keras
本期作者:DerrickMwiti本期翻译:HUDPinkPig未经授权,严禁转载编者按:本文介绍了如何使用LSTM模型进行时间序列预测。股票市场的数据由于格式规整和非常容易获得,是作为研究的很好选择。但不要把本文的结论当作理财或交易建议。本文将通过构建用Python编写的深度学习模型来预测未来股价走势。虽然预测股票的实际价格非常难,但我们可以建立模型来预测股票价格是上涨还是下跌。本文使用的数据可
- TensorFlow 与 PyTorch 的直观区别
Cacciatore->
tensorflowpytorch人工智能python机器学习深度学习
背景TensorFlow与PyTorch都是比较流行的深度学习框架。tf由谷歌在2015年发布,而PyTorch则是FacecbookAI研究团队2016年在原来Torch的基础上发布的。tf采用的是静态计算图。这意味着在执行任何计算之前,你需要先定义好整个计算图,之后再执行。这种方式适合大规模生产环境,可以优化计算图以提高效率。tf的早期版本比较复杂,但在集成Keras库之后相当容易上手。PyT
- AI编程工具合集
109702008
人工智能ai编程人工智能学习
GPT-4o(OpenAI)这里是一些知名和广泛使用的AI编程工具及其简要介绍:1.框架和库(FrameworksandLibraries)-TensorFlow:由谷歌开发的开源深度学习框架,支持多种平台,适合构建和训练复杂神经网络。-PyTorch:由Facebook的人工智能研究小组开发,也是一种开源深度学习库,因其动态计算图和较好的易用性而受欢迎。-Keras:一个高层神经网络API,可以
- MobileNet实战:tensorflow2
大厂在职_xzG
tensorflow人工智能python
2、导入需要的数据包,设置全局参数importnumpyasnpfromtensorflow.keras.optimizersimportAdamimportnumpyasnpfromtensorflow.keras.optimizersimportAdamimportcv2fromtensorflow.keras.preprocessing.imageimportimg_to_arrayfrom
- 使用Python和TensorFlow/Keras构建一个简单的CNN模型来识别手写数字
mosquito_lover1
pythontensorflowkeras
一个简单的图像识别项目代码示例,使用Python和TensorFlow/Keras库来训练一个基本的CNN模型,用于识别MNIST手写数字数据集,并将测试结果输出到HTML。代码运行效果截图:具体操作步骤:1.安装所需的库首先,确保你已经安装了所需的Python库:pipinstalltensorflownumpymatplotlibpandasjinja2TensorFlow:用于构建和训练深度
- 一、TensorFlow的建模流程
李建军
TensorFlowtensorflow人工智能python
1.数据准备与预处理:加载数据:使用内置数据集或自定义数据。预处理:归一化、调整维度、数据增强。划分数据集:训练集、验证集、测试集。转换为Dataset对象:利用tf.data优化数据流水线。importtensorflowastffromtensorflow.kerasimportlayers#加载MNIST数据集(x_train,y_train),(x_test,y_test)=tf.kera
- Tensorflow 2.x(keras)源码详解之第十章:keras中的模型保存与加载(详解Checkpoint&md5&模型序列化)
爱编程的喵喵
tensorflowkeras模型保存
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。 本文主要介绍了Tensorflow2.x(kera
- TensorFlow 示例项目实战与源码解析.zip
ELSON麦香包
本文还有配套的精品资源,点击获取简介:TensorFlow是谷歌大脑团队开发的开源机器学习库,广泛应用于深度学习、人工智能等领域。该压缩包提供了一个TensorFlow示例项目的源代码,涵盖了从基础操作到复杂模型的各种主题。文章将详细介绍TensorFlow的核心概念,如张量、图计算、会话、变量、梯度下降与优化器、损失函数、数据集、模型评估、模型保存与恢复以及KerasAPI。读者可通过实践这些示
- python中keras_Python深度学习——keras(一)
weixin_39534321
python中keras
神经网络的核心组件是层(layer),它是一种数据处理模块,可以看成是一个数据过滤器。进去一些数据,出来的数据变得更加有用(吃进去的是草,挤出来的是奶)。大多数深度学习,都是将若干个简单的层给链接起来,实现渐进式的数据过滤,也就是数据蒸馏(过滤到一定程度就等同于蒸馏)首先来看一个数字识别的案例(1)读取训练集和测试集fromkeras.datasetsimportmnist#加载keras中的mn
- 关于双塔模型的简单介绍
eso1983
python算法推荐算法
双塔模型是一种常用于推荐系统和信息检索等领域的深度学习架构,其核心思想是将用户和物品分别映射到不同的向量空间,通过计算两个向量的相似度来预测用户对物品的偏好或相关性。1.python示例使用python语言来简单示例一下实现过程如下:importtensorflowastffromtensorflow.keras.layersimportInput,Dense,Embedding,Concaten
- TensorFlow:tensorflow.keras.Model.fit()报错: TypeError: Failed to convert elements of xxx
向小凯同学学习
tensorflowkeras人工智能
一、问题在使用TensorFlow进行数据训练的时候,报了下面这样的一个错误。代码如下:importtensorflowastffromutilzimport*importnumpyasnpacoustic=load_features('C:/Test/MSADatasets/data/acoustic_wav2vec.pkl')label=load_features('C:/Test/MSADa
- 解决:AttributeError: module ‘tensorflow‘ has no attribute ‘variable_scope‘
小桥流水---人工智能
Python程序代码Python常见bug算法tensorflowneo4j人工智能
AttributeError:module'tensorflow'hasnoattribute'variable_scope'报错的原因是,tf.variable_scope在TensorFlow2.x中已经被移除,而它是TensorFlow1.x的一种构建静态图的特性。在TensorFlow2.x中,可以通过tf.name_scope或者直接使用函数和KerasAPI来替代。解决方法(最推荐方法
- tf.Keras (tf-1.15)使用记录4-model.fit方法及其callbacks参数
普通攻击往后拉
NN技巧tf.keraskeras人工智能深度学习
model.fit()方法是TensorFlowKeras中用于训练模型的核心方法。其中里面的callbacks参数是实现模型保存、监控、以及和tensorboard联动的重要API1model.fit()方法的参数及使用必需参数x:训练数据的输入。可以是NumPy数组、TensorFlowtf.data.Dataset、Python生成器或keras.utils.Sequence实例。y:训练数
- 基于TensorFlow 2.0的DBN故障诊断程序
ydlhnust
深度学习
以下是一个基于TensorFlow2.0的DBN故障诊断程序,包含特征可视化和结果分析。程序使用合成振动数据进行演示,可直接运行。```pythonimportnumpyasnpimportmatplotlib.pyplotaspltimporttensorflowastffromtensorflow.kerasimportlayers,modelsfromsklearn.model_select
- Keras TypeError: unsupported operand type(s) for : 'int' and 'Dimension'
Yolo_C
kerasTypeError:unsupportedoperandtype
记录一个简单的bug在使用keras时,需要取出一个tensor的某一维作为下一层的维度(这里,我是在写attention)代码:dim=input.shape[1]dense=Dense(dim,activation=‘softmax’)(input)报错:TypeError:unsupportedoperandtype(s)for:‘int’and‘Dimension’解决:只需要将dim转化
- keras快速上手-基于python的深度学习实践-基于索引的深度学习对话模型-源代码...
weixin_34162401
该章的源代码已经调通,如下,先记录下来,再慢慢理解#!/usr/bin/envpython#coding:utf-8#In[1]:importpandasaspdimportnumpyasnpimportpickleimportkerasfromkeras.modelsimportSequential,Modelfromkeras.layersimportInput,Dense,Activatio
- 深度学习篇---深度学习框架
Ronin-Lotus
深度学习篇深度学习人工智能pythonPytorchTensorFlowpaddlepaddle
文章目录前言第一部分:框架简介1.PyTorch简介特点动态计算图易于上手强大的社区支持与Python的集成度高核心组件2.TensorFlow简介特点静态计算图跨平台强大的生态系统Keras集成核心组件3.PaddlePaddle简介特点易于使用高性能工业级应用丰富的预训练模型核心组件第二部分:基本操作PyTorch基本操作TensorFlow基本操作PaddlePaddle基本操作总结前言以上
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- 人工智能学习框架:深入解析与实战指南
一ge科研小菜鸡
人工智能人工智能
个人主页:一ge科研小菜鸡-CSDN博客期待您的关注引言随着人工智能(AI)技术的飞速发展,深度学习、强化学习和自然语言处理等领域的应用愈加广泛。掌握人工智能学习框架(如TensorFlow、PyTorch、Keras等)已成为开发智能系统、研究前沿技术的必备技能。本指南将全面介绍人工智能主流学习框架的特点、安装方法、核心功能,以及通过实践案例展示如何使用这些框架进行AI模型开发、训练与优化。1.
- 【机器学习】 自定义数据集 使用tensorflow框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测
加德霍克
tensorflow逻辑回归人工智能python作业
一、使用tensorflow框架实现逻辑回归1.数据部分:首先自定义了一个简单的数据集,特征X是100个随机样本,每个样本一个特征,目标值y基于线性关系并添加了噪声。tensorflow框架不需要numpy数组转换为相应的张量,可以直接在模型中使用数据集。2.模型定义部分:方案1:model=tf.keras.Sequential([tf.keras.layers.Dense(1,input_sh
- U-Net 生物医学图像分割开源项目介绍
祝珺月
U-Net生物医学图像分割开源项目介绍unetU-NetBiomedicalImageSegmentation项目地址:https://gitcode.com/gh_mirrors/une/unet1.项目基础介绍及主要编程语言U-Net是由IntelAI开发的一个生物医学图像分割的开源项目。该项目基于TensorFlow和Keras框架,使用Python语言编写,旨在为医学图像分析提供高效的解决
- PHP,安卓,UI,java,linux视频教程合集
cocos2d-x小菜
javaUIPHPandroidlinux
╔-----------------------------------╗┆
- 各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
bozch
.net.net mvc
在.net mvc5中,在执行某一操作的时候,出现了如下错误:
各表中的列名必须唯一。在表 'dbo.XXX' 中多次指定了列名 'XXX'。
经查询当前的操作与错误内容无关,经过对错误信息的排查发现,事故出现在数据库迁移上。
回想过去: 在迁移之前已经对数据库进行了添加字段操作,再次进行迁移插入XXX字段的时候,就会提示如上错误。
&
- Java 对象大小的计算
e200702084
java
Java对象的大小
如何计算一个对象的大小呢?
 
- Mybatis Spring
171815164
mybatis
ApplicationContext ac = new ClassPathXmlApplicationContext("applicationContext.xml");
CustomerService userService = (CustomerService) ac.getBean("customerService");
Customer cust
- JVM 不稳定参数
g21121
jvm
-XX 参数被称为不稳定参数,之所以这么叫是因为此类参数的设置很容易引起JVM 性能上的差异,使JVM 存在极大的不稳定性。当然这是在非合理设置的前提下,如果此类参数设置合理讲大大提高JVM 的性能及稳定性。 可以说“不稳定参数”
- 用户自动登录网站
永夜-极光
用户
1.目标:实现用户登录后,再次登录就自动登录,无需用户名和密码
2.思路:将用户的信息保存为cookie
每次用户访问网站,通过filter拦截所有请求,在filter中读取所有的cookie,如果找到了保存登录信息的cookie,那么在cookie中读取登录信息,然后直接
- centos7 安装后失去win7的引导记录
程序员是怎么炼成的
操作系统
1.使用root身份(必须)打开 /boot/grub2/grub.cfg 2.找到 ### BEGIN /etc/grub.d/30_os-prober ### 在后面添加 menuentry "Windows 7 (loader) (on /dev/sda1)" { 
- Oracle 10g 官方中文安装帮助文档以及Oracle官方中文教程文档下载
aijuans
oracle
Oracle 10g 官方中文安装帮助文档下载:http://download.csdn.net/tag/Oracle%E4%B8%AD%E6%96%87API%EF%BC%8COracle%E4%B8%AD%E6%96%87%E6%96%87%E6%A1%A3%EF%BC%8Coracle%E5%AD%A6%E4%B9%A0%E6%96%87%E6%A1%A3 Oracle 10g 官方中文教程
- JavaEE开源快速开发平台G4Studio_V3.2发布了
無為子
AOPoraclemysqljavaeeG4Studio
我非常高兴地宣布,今天我们最新的JavaEE开源快速开发平台G4Studio_V3.2版本已经正式发布。大家可以通过如下地址下载。
访问G4Studio网站
http://www.g4it.org
G4Studio_V3.2版本变更日志
功能新增
(1).新增了系统右下角滑出提示窗口功能。
(2).新增了文件资源的Zip压缩和解压缩
- Oracle常用的单行函数应用技巧总结
百合不是茶
日期函数转换函数(核心)数字函数通用函数(核心)字符函数
单行函数; 字符函数,数字函数,日期函数,转换函数(核心),通用函数(核心)
一:字符函数:
.UPPER(字符串) 将字符串转为大写
.LOWER (字符串) 将字符串转为小写
.INITCAP(字符串) 将首字母大写
.LENGTH (字符串) 字符串的长度
.REPLACE(字符串,'A','_') 将字符串字符A转换成_
- Mockito异常测试实例
bijian1013
java单元测试mockito
Mockito异常测试实例:
package com.bijian.study;
import static org.mockito.Mockito.mock;
import static org.mockito.Mockito.when;
import org.junit.Assert;
import org.junit.Test;
import org.mockito.
- GA与量子恒道统计
Bill_chen
JavaScript浏览器百度Google防火墙
前一阵子,统计**网址时,Google Analytics(GA) 和量子恒道统计(也称量子统计),数据有较大的偏差,仔细找相关资料研究了下,总结如下:
为何GA和量子网站统计(量子统计前身为雅虎统计)结果不同?
首先:没有一种网站统计工具能保证百分之百的准确出现该问题可能有以下几个原因:(1)不同的统计分析系统的算法机制不同;(2)统计代码放置的位置和前后
- 【Linux命令三】Top命令
bit1129
linux命令
Linux的Top命令类似于Windows的任务管理器,可以查看当前系统的运行情况,包括CPU、内存的使用情况等。如下是一个Top命令的执行结果:
top - 21:22:04 up 1 day, 23:49, 1 user, load average: 1.10, 1.66, 1.99
Tasks: 202 total, 4 running, 198 sl
- spring四种依赖注入方式
白糖_
spring
平常的java开发中,程序员在某个类中需要依赖其它类的方法,则通常是new一个依赖类再调用类实例的方法,这种开发存在的问题是new的类实例不好统一管理,spring提出了依赖注入的思想,即依赖类不由程序员实例化,而是通过spring容器帮我们new指定实例并且将实例注入到需要该对象的类中。依赖注入的另一种说法是“控制反转”,通俗的理解是:平常我们new一个实例,这个实例的控制权是我
- angular.injector
boyitech
AngularJSAngularJS API
angular.injector
描述: 创建一个injector对象, 调用injector对象的方法可以获得angular的service, 或者用来做依赖注入. 使用方法: angular.injector(modules, [strictDi]) 参数详解: Param Type Details mod
- java-同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待
bylijinnan
Integer
public class PC {
/**
* 题目:生产者-消费者。
* 同步访问一个数组Integer[10],生产者不断地往数组放入整数1000,数组满时等待;消费者不断地将数组里面的数置零,数组空时等待。
*/
private static final Integer[] val=new Integer[10];
private static
- 使用Struts2.2.1配置
Chen.H
apachespringWebxmlstruts
Struts2.2.1 需要如下 jar包: commons-fileupload-1.2.1.jar commons-io-1.3.2.jar commons-logging-1.0.4.jar freemarker-2.3.16.jar javassist-3.7.ga.jar ognl-3.0.jar spring.jar
struts2-core-2.2.1.jar struts2-sp
- [职业与教育]青春之歌
comsci
教育
每个人都有自己的青春之歌............但是我要说的却不是青春...
大家如果在自己的职业生涯没有给自己以后创业留一点点机会,仅仅凭学历和人脉关系,是难以在竞争激烈的市场中生存下去的....
&nbs
- oracle连接(join)中使用using关键字
daizj
JOINoraclesqlusing
在oracle连接(join)中使用using关键字
34. View the Exhibit and examine the structure of the ORDERS and ORDER_ITEMS tables.
Evaluate the following SQL statement:
SELECT oi.order_id, product_id, order_date
FRO
- NIO示例
daysinsun
nio
NIO服务端代码:
public class NIOServer {
private Selector selector;
public void startServer(int port) throws IOException {
ServerSocketChannel serverChannel = ServerSocketChannel.open(
- C语言学习homework1
dcj3sjt126com
chomework
0、 课堂练习做完
1、使用sizeof计算出你所知道的所有的类型占用的空间。
int x;
sizeof(x);
sizeof(int);
# include <stdio.h>
int main(void)
{
int x1;
char x2;
double x3;
float x4;
printf(&quo
- select in order by , mysql排序
dcj3sjt126com
mysql
If i select like this:
SELECT id FROM users WHERE id IN(3,4,8,1);
This by default will select users in this order
1,3,4,8,
I would like to select them in the same order that i put IN() values so:
- 页面校验-新建项目
fanxiaolong
页面校验
$(document).ready(
function() {
var flag = true;
$('#changeform').submit(function() {
var projectScValNull = true;
var s ="";
var parent_id = $("#parent_id").v
- Ehcache(02)——ehcache.xml简介
234390216
ehcacheehcache.xml简介
ehcache.xml简介
ehcache.xml文件是用来定义Ehcache的配置信息的,更准确的来说它是定义CacheManager的配置信息的。根据之前我们在《Ehcache简介》一文中对CacheManager的介绍我们知道一切Ehcache的应用都是从CacheManager开始的。在不指定配置信
- junit 4.11中三个新功能
jackyrong
java
junit 4.11中两个新增的功能,首先是注解中可以参数化,比如
import static org.junit.Assert.assertEquals;
import java.util.Arrays;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.junit.runn
- 国外程序员爱用苹果Mac电脑的10大理由
php教程分享
windowsPHPunixMicrosoftperl
Mac 在国外很受欢迎,尤其是在 设计/web开发/IT 人员圈子里。普通用户喜欢 Mac 可以理解,毕竟 Mac 设计美观,简单好用,没有病毒。那么为什么专业人士也对 Mac 情有独钟呢?从个人使用经验来看我想有下面几个原因:
1、Mac OS X 是基于 Unix 的
这一点太重要了,尤其是对开发人员,至少对于我来说很重要,这意味着Unix 下一堆好用的工具都可以随手捡到。如果你是个 wi
- 位运算、异或的实际应用
wenjinglian
位运算
一. 位操作基础,用一张表描述位操作符的应用规则并详细解释。
二. 常用位操作小技巧,有判断奇偶、交换两数、变换符号、求绝对值。
三. 位操作与空间压缩,针对筛素数进行空间压缩。
&n
- weblogic部署项目出现的一些问题(持续补充中……)
Everyday都不同
weblogic部署失败
好吧,weblogic的问题确实……
问题一:
org.springframework.beans.factory.BeanDefinitionStoreException: Failed to read candidate component class: URL [zip:E:/weblogic/user_projects/domains/base_domain/serve
- tomcat7性能调优(01)
toknowme
tomcat7
Tomcat优化: 1、最大连接数最大线程等设置
<Connector port="8082" protocol="HTTP/1.1"
useBodyEncodingForURI="t
- PO VO DAO DTO BO TO概念与区别
xp9802
javaDAO设计模式bean领域模型
O/R Mapping 是 Object Relational Mapping(对象关系映射)的缩写。通俗点讲,就是将对象与关系数据库绑定,用对象来表示关系数据。在O/R Mapping的世界里,有两个基本的也是重要的东东需要了解,即VO,PO。
它们的关系应该是相互独立的,一个VO可以只是PO的部分,也可以是多个PO构成,同样也可以等同于一个PO(指的是他们的属性)。这样,PO独立出来,数据持