pytorch搭建RNN-LSTM循环神经网络[分类]详解

  • 因为RNN在长序列中进行反向传播,很可能会出现梯度消失或者梯度爆炸的情况,而LSTM能解决该问题,下面就使用LSTM对MNIST数据集进行分类操作

  • 这里主要讲解搭建RNN部分,其他部分和前文中CNN搭建类似。

    • 可参考pytorch搭建CNN卷积神经网络详解

搭建LSTM 重要!:

class LSTM_RNN(nn.Module):
    """搭建LSTM"""
    def __init__(self):
        super(LSTM_RNN, self).__init__()
        # LSTM层
        self.lstm = nn.LSTM(input_size=input_size,    # 输入单元个数
                            hidden_size=hidden_size,  # 隐藏单元个数
                            num_layers=num_layers,    # 隐藏层数
                            batch_first=True)         # True:[batch, time_step, input_size] False:[time_step, batch, input_size]
        # 输出层
        self.output_layers = nn.Linear(in_features=in_features,    # 输入特征个数
                                       out_features=out_features)  # 输出特征个数

    def forward(self, x):
        # x shape (batch, time_step, input_size)
        # lstm_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)
        # h_c shape (n_layers, batch, hidden_size)
        lstm_out, (h_n, h_c) = self.lstm(x, None)   #
        output = self.output_layers(lstm_out[:, 1, :])    # 选择最后一个时刻的LSTM作为输出
        return output

完整代码:

"""
    作者:Troublemaker
    日期:2020/4/6 16:39
    脚本:lstm_rnn.py
"""

import torch
import torch.nn as nn
import torch.utils.data as Data
import torchvision
import matplotlib.pyplot as plt

torch.manual_seed(1)
# 设置超参数

epoches = 2
batch_size = 64
time_step = 28
input_size = 28
learning_rate = 0.01
hidden_size = 64
num_layers = 1

# 训练集
train_dataset = torchvision.datasets.MNIST(root="./mnist/",train=True,transform=torchvision.transforms.ToTensor(), download=False)
# 测试集
test_dataset = torchvision.datasets.MNIST(root="./mnist/", train=False, transform=torchvision.transforms.ToTensor())
test_x = test_dataset.test_data.type(torch.FloatTensor)[:2000]/255
test_y = test_dataset.test_labels[:2000]

# print(test_dataset.test_data)
# print(test_dataset.test_data.size())
# plt.imshow(test_dataset.test_data[1].numpy())
# plt.show()

# 将训练级集入Loader中
train_loader = Data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True, num_workers=3)


class LSTM_RNN(nn.Module):
    """搭建LSTM神经网络"""
    def __init__(self):
        super(LSTM_RNN, self).__init__()
        self.lstm = nn.LSTM(input_size=input_size,
                            hidden_size=hidden_size,   # rnn 隐藏单元数
                            num_layers=num_layers,     # rnn 层数
                            batch_first=True, # If ``True``, then the input and output tensors are provided as (batch, seq, feature). Default: False
                            )
        self.output_layer = nn.Linear(in_features=64, out_features=10)

    def forward(self, x):
        # x shape (batch, time_step, input_size)
        # lstm_out shape (batch, time_step, output_size)
        # h_n shape (n_layers, batch, hidden_size)
        # h_c shape (n_layers, batch, hidden_size)
        lstm_out, (h_n, h_c) = self.lstm(x, None)   # If `(h_0, c_0)` is not provided, both **h_0** and **c_0** default to zero.
        output = self.output_layer(lstm_out[:, -1, :])   # 选择最后时刻lstm的输出
        return output


def main():
    lstm = LSTM_RNN()
	print(lstm)
    # 定义优化器和损失函数
    optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate)
    loss_function = nn.CrossEntropyLoss()

    for epoch in range(epoches):
        print("进行第{}个epoch".format(epoch))
        for step, (batch_x, batch_y) in enumerate(train_loader):
            batch_x = batch_x.view(-1, 28, 28)
            output = lstm(batch_x)
            loss = loss_function(output, batch_y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if step % 50 == 0:
                test_output = lstm(test_x)
                pred_y = torch.max(test_output, dim=1)[1].data.numpy()
                accuracy = ((pred_y == test_y.data.numpy()).astype(int).sum()) / float(test_y.size(0))
                print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)

    test_output = lstm(test_x[:10])
    pred_y = torch.max(test_output, dim=1)[1].data.numpy().squeeze()
    print(pred_y)
    print(test_y[:10])

if __name__ == "__main__":
    main()

  • 训练开始时的表现:

    pytorch搭建RNN-LSTM循环神经网络[分类]详解_第1张图片

  • 训练完的表现

    pytorch搭建RNN-LSTM循环神经网络[分类]详解_第2张图片

    • 对于该任务最后的表现可能没有CNN那么好,但也是一个好的方法。

你可能感兴趣的:(#,莫凡系列学习笔记)