- 【NLP】 9. 处理创造性词汇 & 词组特征(Creative Words & Features Model), 词袋模型处理未知词,模型得分
pen-ai
NLP机器学习自然语言处理人工智能深度学习
这里写目录标题处理创造性词汇&词组特征(CreativeWords&FeaturesModel)1.处理否定(NegationHandling)2.词组特征(Bigrams&N-grams)3.结合否定传播与n-grams进行优化词袋模型(Bag-of-Words,BoW)1.BoW示例2.处理未知词3.为什么忽略未知词?4.处理未知词的方法计算模型得分(ScoreCalculation)处理创造
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 自然语言处理NLP 01语言转换&语言模型
伊一大数据&人工智能学习日志
自然语言处理自然语言处理人工智能语言模型nlp机器学习深度学习
目录语言转化方式1.数据预处理(DataPreprocessing)(1)文本清理(2)分词(3)语言特殊处理2.特征提取(FeatureExtraction)(1)词袋模型(BagofWords,BoW)(2)TF-IDF(3)词嵌入(WordEmbedding)3.模型输入(ModelInput)(1)序列编码(2)预训练模型输入4.模型推理(ModelInference)(1)使用传统模型(
- 利用gensim生成词袋模型(基于频次和基于TF-IDF)
weixin_50291342
文本表示自然语言处理python机器学习
前言参考文献:胡盼盼编著.自然语言处理从入门到实战[M].中国铁道出版社,2020.最近在学习文本表示的一种最简单方式——词袋模型,书中给出了使用gensim生成词袋模型的代码,原代码就来自于这本书,我加了一些注释,方便理解代码。一、引入库fromgensim.modelsimportTfidfModelfromgensim.corporaimportDictionaryimportjieba二、
- 2.6 聚焦:Word Embedding
少林码僧
AI大模型应用实战专栏wordembedding
聚焦:WordEmbeddingWordEmbedding(词嵌入)是一种将词语转化为低维向量表示的技术,使得词语在数学空间中具有语义上的相似性。它是自然语言处理(NLP)中不可或缺的一部分,为文本数据提供了强大的表示能力。与传统的基于词频的词袋模型(Bag-of-Words)相比,WordEmbedding能够捕捉到词语之间更深层的语义和上下文信息。1.词嵌入的定义与作用WordEmbeddin
- 每天一个数据分析题(五百二十)- 词嵌入模型
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
关于词嵌入模型,以下说法错误的是?A.GloVe模型属于词嵌入模型B.Word2Vec模型属于词嵌入模型C.词袋模型属于词嵌入模型D.词嵌入模型基本假设是出现在相似的上下文中的词含义相似数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于CDA模拟题库点击此处获取答案
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 从零开始大模型开发与微调:有趣的词嵌入
AGI通用人工智能之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:有趣的词嵌入作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来自然语言处理(NLP)领域近年来取得了飞速发展,尤其是在预训练语言模型(Pre-trainedLanguageModels,简称PLMs)方面。从最初的词袋模型、隐语义模型,到如今的Transformer模型,PLMs在NLP任务中取得了
- (done) NLP “bag-of-words“ 方法 (带有二元分类和多元分类两个例子)词袋模型、BoW
shimly123456
NLP相关杂谈自然语言处理c#人工智能
一个视频:https://www.bilibili.com/video/BV1mb4y1y7EB/?spm_id_from=333.337.search-card.all.click&vd_source=7a1a0bc74158c6993c7355c5490fc600这里有个视频,讲解得更加生动形象一些总得来说,词袋模型(Bow,bag-of-words)是最简单的“文本—>矢量”(把文本转为矢量
- NLP-词袋模型
草明
数据结构与算法自然语言处理人工智能
词袋模型是自然语言处理中常用的一种文本表示方法,用于将文本转换为数值型向量,以便于计算机进行处理和分析。在词袋模型中,文本被看作是一个由词语组成的集合,而每个词语都是独立的,不考虑它们在文本中的顺序和语境关系。因此,词袋模型将文本表示为一个固定长度的向量,其中每个维度对应一个词语,该维度的值表示该词语在文本中出现的频次或者其他统计量。具体来说,词袋模型包括以下步骤:分词:将文本按照一定的规则或算法
- word2vec工具学习笔记
适说心语
今天是第一次听说这个工具,本来是为了解决非目标客户的问题,但是要从头了解这个内容,所以边找资料边记录一下!一、简介Word2vec,是为一群用来产生词向量的相关模型。这些模型为浅而双层的神经网络,用来训练以重新建构语言学之词文本。网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,词的顺序是不重要的。训练完成之后,word2vec模型可用来映射每个词到一个向量,可用来表示
- 特征工程:特征构建
林浩杨
数据探索与可视化机器学习数据分析python机器学习算法
目录一、前言二、正文Ⅰ.分类特征重新编码①分类特征②离散特征③多标签类别编码Ⅱ.数值特征重新编码①多项式②多个变量的多项式特征Ⅲ.文本数据的特征构建①文本词频条形图②词袋模型③TF-IDF矩阵三、结语一、前言特征工程中的特征构建的主要目的是生成新的特征,而针对不同的特征,有多种方式可以形成新的特征,例如有针对分类特征、针对数值特征和针对文本特征对其进行生成新的特征。二、正文Ⅰ.分类特征重新编码①分
- NLP_Bag-Of-Words(词袋模型)
you_are_my_sunshine*
NLP自然语言处理人工智能
文章目录词袋模型用词袋模型计算文本相似度1.构建实验语料库2.给句子分词3.创建词汇表4.生成词袋表示5.计算余弦相似度6.可视化余弦相似度词袋模型小结词袋模型词袋模型是一种简单的文本表示方法,也是自然语言处理的一个经典模型。它将文本中的词看作一个个独立的个体,不考虑它们在句子中的顺序,只关心每个词出现的频次,如下图所示用词袋模型计算文本相似度1.构建实验语料库#构建一个数据集corpus=["我
- 大模型|基础_word2vec
晓源Galois
word2vec人工智能自然语言处理
文章目录Word2Vec词袋模型CBOWContinuousBag-of-WordsContinuousSkip-Gram存在的问题解决方案其他技巧Word2Vec将词转化为向量后,会发现king和queen的差别与man和woman的差别是类似的,而在几何空间上,这样的差别将会以平行的关系进行表达。会使用滑动窗口的机制。滑动窗口内会有一个target目标词(上图蓝色部分),滑动窗口其他部分就是c
- 自然语言处理中的深度学习
qiufeng1ye
教材选用《动手学深度学习》,李沐等著;词嵌⼊(word2vec)⾃然语⾔是⼀套⽤来表达含义的复杂系统。把词映射为实数域向量的技术也叫词嵌⼊(wordembedding)。近年来,词嵌⼊已逐渐成为⾃然语⾔处理的基础知识。Word2vec⼯具包含了两个模型:跳字模型(skip-gram)和连续词袋模型(continuousbagofwords,简称CBOW)。跳字模型假设基于中⼼词来⽣成背景词,连续词
- word2vec
e237262360d2
将词表征为实数值向量的高效工具,采用的模型有CBOW(Continuesbag-of-words连续词袋模型)和Skip-Gram两种。word2vec通过训练,可以把对文本内容的处理简化为K维向量空间中的向量运算词向量:把一个词表示成一个向量One-hotRepresentation维度是词典的大小DistributedRepresentation维度以50,100比较常见CBOW:用上下文预测
- 一些概念
半大人
1.一个文本集合称为语料库(Corpus),当有几个这样的文本集合的时候,我们称之为语料库集合(Corpora)。2.中文汉语有搜狗语料、人民日报语料。3.数据清洗提取对要处理数据无用或影响效果的数据。包括去停用词常见的数据清洗方式有:人工去重、对齐、删除和标注等,或者规则提取内容、正则表达式匹配、根据词性和命名实体提取、编写脚本或者代码批处理等。4.提取特征词袋模型(BagofWord,BOW)
- ORB-SLAM2论文总结
Mr.Qin_
SLAMslamorbORB-SLAM2
ORB-SLAM2学文学习总结1系统概述2加速特征点匹配策略2.1词袋模型加速匹配2.2恒速运动模型加速匹配3系统原理详解3.1初始化3.2跟踪线程3.3局部建图线程3.4回环检测线程4一些总结4.1单目、双目、RGBD的差别4.2系统所用到的优化1系统概述 ORB-SLAM2支持单目、双目、RGB-D相机的输入,整个系统包含三个线程跟踪线程、局部建图线程、回环检测线程(当检测到回环时,回环融合
- 自然语言处理N天-Day0501词袋和词向量模型
我的昵称违规了
新建MicrosoftPowerPoint演示文稿(2).jpg说明:本文依据《中文自然语言处理入门实战》完成。目前网上有不少转载的课程,我是从GitChat上购买。第五课文本可视化技巧算是进入正题了,NLP重要的一个环节,构建词向量模型,在这里使用到了Gensim库,安装方式很简单pipinstallgensim词袋模型BOW词袋将文本看作一个无序的词汇集合,忽略语法和单词顺序,对每一个单词进行
- Python文本向量化入门(五):自定义中文词袋
Dxy1239310216
Pythonpython人工智能开发语言
在文本向量化中,使用预训练的词向量,例如Word2Vec、GloVe或FastText等,是常见的做法。这些词向量已经在大量文本数据上进行了训练,为我们提供了现成的词嵌入表示。然而,有时候我们可能希望根据特定的任务或数据集来自定义词向量。这就需要我们自己构建一个词袋模型(BagofWords)。在之前的文章中,我们介绍了如何使用Python的CountVectorizer类将文本转换为词频矩阵。但
- 贝叶斯算法(新闻分类任务)
Avasla
数据分析项目笔记机器学习算法自然语言处理python数据分析
文章目录前言介绍一、新闻数据集处理二、文本分词(jibe分词器)三、去停用词停用词表是什么?使用停用词表过滤文件四、构建文本特征4.1)统计词频4.2)词云展示4.3)TF-IDF:提取关键词4.4)数据集标签制作五、建立模型5.1)数据集切分5.2)使用词袋模型的特征来建模5.2.1)制作词袋模型特征5.2.2)建模&观察结果5.3)使用TF-IDF特征建模前言介绍内容介绍:建立新闻文章分类模型
- NLP学习笔记(为了完成基于知识图谱的问答系统进行的基础学习)
ChessZH
学习记录nlp自然语言处理python
目录前言0.需要使用的模型的学习(更新中)Bi-LSTM什么是LSTM与Bi-LSTM为什么使用LSTM与Bi-LSTMLSTM1.一切的基础——词袋模型与句子相似度词袋模型句子相似度简化:利用gensim遇到的问题2.TF-IDF——一个比较重要的原理什么是TF-IDF文本与预处理Gensim中的TF-IDF实践计算TF-IDF值第二部分的完整代码3.词形还原(Lemmatization)什么是
- 自然语言处理
闪闪发亮的小星星
深度学习自然语言处理人工智能
以下是7节课,可帮助您开始使用Python中的自然语言处理深度学习并提高工作效率:第01课:深度学习和自然语言第02课:清理文本数据第03课:词袋模型第04课:词嵌入表示第05课:学习嵌入第06课:对文本进行分类第07课:电影评论情绪分析项目1.自然语言处理解决的问题自然语言处理,简称NLP,被广泛定义为通过软件自动操作自然语言,如语音和文本。自然语言处理的研究已经存在了50多年,随着计算机的兴起
- Datawhale零基础入门NLP赛事 - Task3 基于机器学习的文本分类
AugBoost
我们构建了基于词袋模型和TF-IDF的特征提取器,随后构建了岭回归的分类器,并通过更改其各项参数观察变化,最后,使用逻辑回归作为分类器,发现效果大不如岭回归分类器。具体分析随后附上。
- 机器学习-基于Word2vec搜狐新闻文本分类实验
septnancye
02学习笔记(随记)机器学习word2vec分类学习自然语言处理
机器学习-基于Word2vec搜狐新闻文本分类实验实验介绍Word2vec是一群用来产生词向量的相关模型,由Google公司在2013年开放。Word2vec可以根据给定的语料库,通过优化后的训练模型快速有效地将一个词语表达成向量形式,为自然语言处理领域的应用研究提供了新的工具。Word2vec模型为浅而双层的神经网络,网络以词表现,并且需猜测相邻位置的输入词,在word2vec中词袋模型假设下,
- 使用Mindspore实现词袋模型思想
软件开发技术局
机器学习
链接:词袋模型_百度百科词袋模型模型下,像是句子或是文件这样的文字可以用一个袋子装着这些词的方式表现,这种表现方式不考虑文法以及词的顺序。最近词袋模型也被应用在电脑视觉领域。词袋模型被广泛应用在文件分类,词出现的频率可以用来当作训练分类器的特征。关于"词袋"这个用字的由来可追溯到泽里格·哈里斯于1954年在DistributionalStructure的文章。例子:(1)Johnlikestowa
- Word2Vec详解: CBOW & Skip-gram和负采样
hadiii
word2vec人工智能机器学习
Word2Vec:CBOW&Skip-gram如果是拿一个词语的上下文作为输入,来预测这个词语本身,则是CBOW模型。而如果是用一个词语作为输入,来预测它周围的上下文,那这个模型叫做Skip-gram模型。CBOW模型连续词袋模型(ContinuousBagofWords,CBOW)是一种常用的词嵌入模型,它与跳元模型有一些相似之处,但也有关键区别。连续词袋模型的主要假设是,中心词是基于其在文本序
- 【AI】人工智能复兴的推进器之自然语言处理
giszz
人工智能学习笔记人工智能自然语言处理
目录一、什么是自然语言处理二、词袋模型三、向量四、代码示例五、大模型和自然语言处理接上篇:【AI】人工智能复兴的推进器之机器学习-CSDN博客一、什么是自然语言处理自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法,是一门融语言学、计算机科学、数学于一体的科学。自
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]
[email protected]:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s