hdoj 5895 Mathematician QSC 【数论----矩阵快速幂求解类斐波那契数列】

Mathematician QSC

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 342    Accepted Submission(s): 184


Problem Description
QSC dream of becoming a mathematician, he believes that everything in this world has a mathematical law.

Through unremitting efforts, one day he finally found the QSC sequence, it is a very magical sequence, can be calculated by a series of calculations to predict the results of a course of a semester of a student.

This sequence is such like that, first of all, f(0)=0,f(1)=1,f(n)=f(n2)+2f(n1)(n2)Then the definition of the QSC sequence is  g(n)=ni=0f(i)2. If we know the birthday of the student is n, the year at the beginning of the semester is y, the course number x and the course total score s, then the forecast mark is  xg(ny)%(s+1).
QSC sequence published caused a sensation, after a number of students to find out the results of the prediction is very accurate, the shortcoming is the complex calculation. As clever as you are, can you write a program to predict the mark?
 

Input
First line is an integer T(1≤T≤1000).

The next T lines were given n, y, x, s, respectively.

n、x is 8 bits decimal integer, for example, 00001234.

y is 4 bits decimal integer, for example, 1234.
n、x、y are not negetive.

1≤s≤100000000
 

Output
For each test case the output is only one integer number ans in a line.
 

Sample Input
 
   
2 20160830 2016 12345678 666 20101010 2014 03030303 333
 

Sample Output
 
   
1 317
 

Source
2016 ACM/ICPC Asia Regional Shenyang Online
 

Recommend
wange2014   |   We have carefully selected several similar problems for you:   5901  5900  5899  5898  5897 

推出公式:

1.    F(n)=  G(n)*G(n+1)/2:;

2.    F  ( n)= 5* F(n-1) + 5* F(n-2)-F(n-3)


公式:

(x^n)%c=x^(n%phi(c)+phi(c))%c;


原则:

方阵有结合律---没有交换律


思路:

先求出phi(s+1)--然后用矩阵求出F(n)%phi+phi---

然后快速幂求答案---


构造矩阵

A:

5  5 -1

1  0  0

0  1  0


和列向量

B

F [ 2 ]

F [ 1 ]

F [ 0 ]


C =A*B=

F [ 3 ]

F [ 2 ]

F [ 1 ]


F [ n ]                  F ( n-1 )                                      F [ 2 ]

F [ n-1]   =  A *   F ( n-2 )    =A...........=A^(n-2)*   F [ 1 ]

F [n-2]                F (n-3)                                         F [ 0 ] 



代码1:

注意:

   F(n)=  G(n)*G(n+1)/2:

  因为最后要除2---所以取模时我们要对2*phi取模-----


#include
#include
#include
using namespace std;
#define LLL long long
LLL mod;
struct node{
	LLL shu[2][2];
	void clear()
	{
		for (int i=0;i<2;i++)
			for (int j=0;j<2;j++)
				shu[i][j]=0;
	}
	node operator * (const node &B) const
	{
		node C;
		C.clear();
		for (int i=0;i<2;i++)
			for (int j=0;j<2;j++)
				for (int k=0;k<2;k++)
					C.shu[i][j]=(C.shu[i][j]+shu[i][k]*B.shu[k][j])%mod;
        return C;
	}
}A,B,C,D;
LLL P[2]={0,1};
LLL phi(LLL xx)
{
	LLL lp=xx;
	for (LLL i=2;i*i<=xx;i++)
	{
		if (xx%i==0)
		{
			lp=lp-lp/i;
			while (xx%i==0)
			xx/=i;
		}
	}
	if (xx>1)
	lp=lp-lp/xx;
	return lp;
}
LLL g(LLL xx)
{
	LLL lp;
	mod*=2;//注意
	A.clear();
	for (int i=0;i<2;i++)
	A.shu[i][i]=1;
	B.clear();
	B.shu[1][0]=B.shu[0][1]=1;
	B.shu[0][0]=2;
	if (xx<3)
	return P[xx];
	while (xx)
	{
		if (xx&1)
		A=A*B;
		B=B*B;
		xx>>=1;
	}
	lp=0;
	lp=(A.shu[0][0]*A.shu[0][1])/2;
	mod/=2;//注意
	lp+=mod;
	return lp;
}
void slove(LLL x,LLL n,LLL s)
{
	mod=phi(s);
	LLL lp=g(n);
	LLL ans=1;
	while (lp)
	{
		if (lp&1)
		ans=(ans*x)%s;
		x=(x*x)%s;
		lp>>=1;
	}
	printf("%lld\n",ans);
}
int main()
{
	int t;scanf("%d",&t);
	while (t--)
	{
		LLL n,y,x,s;
		scanf("%lld%lld%lld%lld",&n,&y,&x,&s);
		n*=y;
		s+=1;
		slove(x,n,s);
	}
	return 0;
}



代码:

#include
#include
#include
using namespace std;
#define LLL long long
LLL mod;
struct node{
	LLL shu[3][3];
	void clear()
	{
		for (int i=0;i<3;i++)
			for (int j=0;j<3;j++)
				shu[i][j]=0;
	}
	node operator * (const node &B) const
	{
		node C;
		C.clear();
		for (int i=0;i<3;i++)
			for (int j=0;j<3;j++)
				for (int k=0;k<3;k++)
					C.shu[i][j]=(C.shu[i][j]+shu[i][k]*B.shu[k][j])%mod;
        return C;
	}
}A,B,C,D;
LLL P[3]={0,1,5};
LLL phi(LLL xx)
{
	LLL lp=xx;
	for (LLL i=2;i*i<=xx;i++)
	{
		if (xx%i==0)
		{
			lp=lp-lp/i;
			while (xx%i==0)
			xx/=i;
		}
	}
	if (xx>1)
	lp=lp-lp/xx;
	return lp;
}
LLL g(LLL xx)
{
	LLL lp;
	A.clear();
	for (int i=0;i<3;i++)
	A.shu[i][i]=1;
	B.clear();
	B.shu[0][0]=B.shu[0][1]=5;B.shu[0][2]=-1;
	B.shu[1][0]=B.shu[2][1]=1;
	if (xx<3)
	return P[xx];
	xx-=2;
	while (xx)
	{
		if (xx&1)
		A=A*B;
		B=B*B;
		xx>>=1;
	}
	lp=0;
	for (int i=0;i<3;i++)
	lp=(lp+A.shu[0][i]*P[2-i])%mod;
	lp+=mod;
	return lp;
}
void slove(LLL x,LLL n,LLL s)
{
	mod=phi(s);
	LLL lp=g(n);
	LLL ans=1;
	//printf("%lld   %lld   %lld    %lld\n",x,lp,s,mod);
	while (lp)
	{
		if (lp&1)
		ans=(ans*x)%s;
		x=(x*x)%s;
		lp>>=1;
	}
	printf("%lld\n",ans);
}
int main()
{
	int t;scanf("%d",&t);
	while (t--)
	{
		LLL n,y,x,s;
		scanf("%lld%lld%lld%lld",&n,&y,&x,&s);
		n*=y;
		s+=1;
	//	printf("%lld %lld %lld\n",x,n,s);
		slove(x,n,s);
	}
	return 0;
}


你可能感兴趣的:(杭电oj,我的ACM成长历程---啦啦啦,矩阵,快速幂,运用矩阵求递推式---)