- 基于支持向量机SVM的电网负荷预测,libsvm工具箱详解,SVM详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习SVM电网负荷预测svr
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于支持向量机SVM的电网负荷预测代码结果分析展望摘要基于支持向量机SVM的电网负荷预测,SVM原理,SVM工具箱详解,SVM常见改进方法支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空
- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- matlab基于SVM的手写字体识别,svm 基于LIBSVM的matlab手写字体识别 AI-NN-PR 人工智能/神经网络/深度学习 276万源代码下载- www.pudn.com...
傅奇
文件名称:svm下载收藏√[54321]开发工具:matlab文件大小:126KB上传时间:2017-05-15下载次数:0详细说明:基于LIBSVM的matlab手写字体识别-AhandwrittenfontrecognitionbasedonSVM文件列表(点击判断是否您需要的文件,如果是垃圾请在下面评价投诉):chapter19\Chapter_CharacterRecognitionUsi
- 【全网最低价】司守奎《数学建模算法与应用》第三版pdf+数学建模资料(非常详细的算法学习和路线)小白推荐
阿贵学长
数学建模学习算法matlab性能优化深度学习
1.《数学建模算法与应用》主要内容包括时间序列、支持向量机、偏最小二乘面归分析、现代优化算法、数字图像处理、综合评价与决策方法、预测方法以及数学建模经典算法等内容。文章末尾有电子版PDF文件链接2.算法学习流程及详细过程主要算法:工具箱推荐遗传算法-beatxbx工具箱,求解速度很快,并行计算LIBSVM-比MATLAB自带工具箱好用得多yamlip,特别推荐,统一优化求解工具箱由于文件很多,学长
- matlab中的分类工具箱svm,MATLAB实现多分类和libsvm工具箱的安装使用详解
菩提流支
首先告诉大家MATLAB现在可以实现多类分类的问题!但是需要借助工具箱!下面介绍的是台湾林智仁教授的libsvm工具箱在MATLAB中的安装和使用:安装环境:Win7、MicrosoftVisualStudio2010MATLAB版本:R2010b编译器版本:MicrosoftVisualC++2010安装过程:网站去下载最新的SVM软件,找到DownloadLIBSVM,点击zipfile下载,
- 基于支持向量机SVM的风电场NWP数据预测,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab数据挖掘
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的风电场NWP预测结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的采油机故障诊断,Libsvm故障的详细诊断,SVM的详细原理
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习算法matlab分类
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的采油机故障识别代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线
- 基于粒子群改进的支持向量机SVM的情感分类识别,pso-svm情感分类识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的情感分类预测代码结果分析展望支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性
- 基于支持向量机SVM的分类预测,基于SVM的雷击故障识别
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习分类matlab人工智能
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的雷击故障分类预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SV
- 基于k折交叉验证的支持向量机SVM的多分类预测,SVM的详细原理,SVM工具箱详解及注意事项
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法K折交叉验证
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM多分类预测,基于k折交叉验证的支持向量机SVM的多分类预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88782939SVM应用实例,基于SVM多分类预测,基于k折交叉验证的
- sklearn.svm.SVC 参数说明
人鱼线
机器学习
sklearn中的SVC函数本身这个函数也是基于libsvm实现的,所以在参数设置上有很多相似的地方。(PS:libsvm中的二次规划问题的解决算法是SMO)。sklearn.svm.SVC(C=1.0,kernel='rbf',degree=3,gamma='auto',coef0=0.0,shrinking=True,probability=False,tol=0.001,cache_size
- macOS 10.13.6下安装libsvm库
3ni
libsvm官网下载地址找到DownloadLIBSVM点击zipfile或者tar.gz即可进行下载下载完后解压,进入主目录,里面有README文件,里面是使用说明(都是英文...)先进主目录,就是解压完后的文件夹(libsvm-3.23),然后在shell中输入make命令,构建过程中会有警告(Warning),不用管,结束后再进入Python子目录,然后又是make,结束后会在主目录下生成l
- 西瓜书第六章课后习题
lammmya
6.1试证明样本空间中任意点x到超平面(w,b)的距离为式(6.2)。画了个图在纸上进行了证明,感觉这样自会通俗易懂些。6.2试使用LIBSVM,在西瓜数据集3.0α上分别用线性核和高斯核训练一个SVM,并比较其支持向量的差别。导入相应的包主体函数:设置参数,输出。数据特征可视化输出结果以及数据特征可视化最终结果如下图结果表明,使用线性核和高斯训练核的支持向量实际是一样的(两条线重合),且数量相同
- 基于交叉验证和网格优化的SVM分类算法,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机分类算法交叉验证网格优化
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于交叉验证和网格优化的SVM分类算法,混淆矩阵图(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88725374SVM应用实例,基于交叉验证和网格优化的SVM分类算法代码结果分析展望支持
- 支持向量机SVM详细原理,Libsvm工具箱详解,svm参数说明,svm应用实例,神经网络1000案例之15
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机机器学习神经网络matlab
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题SVM应用实例,基于SVM的股票价格预测支持向量机SVM的详细原理SVM的定义支持向量机(supportvectormachines,SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机;SVM还包括核技巧,这使它成为实质上的非线性分类器。SVM的
- 基于自定义权重的支持向量机,基于自定义权重的SVM
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习自定义权重SVM
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于自定义权重的支持向量机,基于自定义权重的SVM资源-CSDN文库https://download.csdn.net/download/abc991835105/88637048SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM的
- 基于支持向量机SVM的界面黏附能预测,SVM的详细原理,SVM工具箱使用说明
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的界面黏附能预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88647878SVM应用实例,基于支持向量机SVM的界面黏附能预测代码结果分析展望支持向量机SVM的详
- SVM的详细原理,SVM工具箱使用说明,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习油温油压预测
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测资源-CSDN文库https://download.csdn.net/download/abc991835105/88637069SVM应用实例,基于SVM的油压油温预测,基于支持向量机SVM的油压油温预测代码结果分
- 基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测
神经网络机器学习智能算法画图绘图
100种启发式智能算法及应用支持向量机SVM神经网络支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的冷却剂流量预测,基于支持向量机SVM的冷却剂流量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611090SVM应用实例,基于SVM的冷却剂流量预测,基于支持向量机S
- 基于支持向量机SVM的港口分类,SVM原理,SVM工具箱详解
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机分类算法
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的港口分类(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88636296SVM应用实例,基于支持向量机SVM的港口分类代码结果分析展望支持向量机SVM的详细原理SVM
- 基于SVM的用气量预测,基于支持向量机SVM的用气量预测
神经网络机器学习智能算法画图绘图
支持向量机SVM100种启发式智能算法及应用支持向量机算法机器学习
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的用气量预测,基于支持向量机SVM的用气量预测(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88611067SVM应用实例,基于SVM的用气量预测,基于支持向量机SVM的用气量
- 基于SVM的鸟鸣识别,语谱分析
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习鸟鸣识别语谱分析
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于SVM的鸟鸣识别,语谱分析(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88610830SVM应用实例,基于SVM的鸟鸣识别,语谱分析代码结果分析展望支持向量机SVM的详细原理SVM
- 【机器学习】libsvm 简单使用示例(C++)
十年一梦实验室
机器学习c++支持向量机人工智能开发语言
libsvm简单使用demo一、libsvm使用说明二、svm.h源码#ifndef_LIBSVM_H//如果没有定义_LIBSVM_H宏#define_LIBSVM_H//则定义_LIBSVM_H宏,用于防止重复包含#defineLIBSVM_VERSION317//定义一个宏,表示libsvm的版本号#ifdef__cplusplus//如果是C++编译器extern"C"{//则使用C语言的
- Libsvm中grid.py文件的解读
Kelly_Ai_Bai
python
1.导入相关文件这里重点讲一下__all__=['find_parameters']:_all__=['find_parameters']是Python中用于定义模块级别的变量__all__的语法,__all__是一个包含模块中应该被公开(即可以通过frommoduleimport*导入)的变量名的列表__all__是一个约定俗成的变量名,用于指定在使用frommoduleimport*语句时,应
- Matlab 2020b 中安装与使用libsvm
Kelly_Ai_Bai
matlab开发语言svm
一、下载与安装libsvm1.下载libsvm下载地址:https://www.csie.ntu.edu.tw/~cjlin/libsvm/下载后的结果:对该压缩包进行解压,最好解压到matlab安装路径中的toolbox文件夹下,如下图所示:注意:这里是matlab2020b和libsvm3.32(请注意版本的差异问题,版本的不一致或许可能会造成安装出现问题)2.设置路径在matlab2020b
- 如何在Matlab 2020b 中运行BAT文件中的python脚本指令
Kelly_Ai_Bai
python机器学习开发语言batch
这篇文章我将会阐述如何来使用libsvm进行模型的训练以及结果的预测。关于要运行的BAT文件及其内容介绍下面这是我的BAT文件(train_pixels)以及文件中的内容,可以看到BAT文件中的内容是运行python脚本的指令。后缀为.BAT的文件是一个批处理文件,通常用于批量执行一系列命令。此处的train_pixels.BAT文件中就是运行Python脚本。在MATLAB中运行外部的Batch
- 时间序列预测 | SVM时间序列预测建模,单步、多步(Python)
码农腾飞
时间序列预测(TSF)机器学习模型(ML)1024程序员节时间序列建模
(1)代码解读scikit-learn提供了3种支持向量机(SVM)的回归器:sklearn.svm.SVR、sklearn.svm.NuSVR和sklearn.svm.LinearSVR:(a)SVR(SupportVectorRegression)说明:SVR是基于libsvm的支持向量回归的实现。核函数:可以使用多种核函数,例如线性、多项式、RBF(径向基函数)和sigmoid等。主要参数:
- linux使用for命令行,Linux Bash代码 利用for循环实现命令的多次执行
深圳创业导师
linux使用for命令行
LinuxBash代码[
[email protected]]$for((i=0;i&2;exit1;fisource/etc/p...Linux:-bash:***:commandnotfoundLinux:-bash:***:commandnotfound,系统很多命令都用不了,均提示没有此命令.突然之间lin
- python实现svm和使用f-score
狼无雨雪
使用方法使用python语言实现对于支持向量机(SVM)特征选择的实现,特征选择算法为f-score,该程序的主要有点是可输入文件囊括了csv,libsvm,arff等在序列分类的机器学习领域常用到的格式,其中csv:最后一列为class,libsvm:第一列为class,arff:通常最后一列为类别,其中csv和libsvm中不存在开头,直接是使用的数据。pythontrain.py-i1.cs
- 基于支持向量机SVM的时间序列数据训练测试和预测未来数据,LIBSVM工具箱详解
神经网络机器学习智能算法画图绘图
支持向量机SVM支持向量机算法机器学习训练和预测未来数据
目录支持向量机SVM的详细原理SVM的定义SVM理论Libsvm工具箱详解简介参数说明易错及常见问题完整代码和数据下载链接:基于支持向量机SVM的时间序列数据训练测试和预测未来数据(代码完整,数据齐全)资源-CSDN文库https://download.csdn.net/download/abc991835105/88547530SVM应用实例,基于支持向量机SVM的时间序列数据训练测试和预测未来
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不