根据前序和中序遍历重建二叉树 java

根据前序和中序遍历重建二叉树 java

题目描述
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。

先来分析一下前序遍历和中序遍历得到的结果,
前序遍历第一位是根节点;
中序遍历中,根节点左边的是根节点的左子树,右边是根节点的右子树。
例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}。

首先,根节点 是{ 1 };
左子树是:前序{ 2,4,7 } ,中序{ 4,7,2 };
右子树是:前序{ 3,5,6,8 } ,中序{ 5,3,8,6 };
这时,如果我们把左子树和右子树分别作为新的二叉树,则可以求出其根节点,左子树和右子树。
这样,一直用这个方式,就可以实现重建二叉树。

代码1:

    public class Solution {
	public TreeNode reConstructBinaryTree(int[] pre, int[] in) {
		TreeNode root = reConstructBinaryTree(pre, 0, pre.length - 1, in, 0, in.length - 1);
		return root;
	}

	// 前序遍历{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6}
	private TreeNode reConstructBinaryTree(int[] pre, int startPre, int endPre, int[] in, int startIn, int endIn) {

		if (startPre > endPre || startIn > endIn) {
			return null;
		}
		TreeNode root = new TreeNode(pre[startPre]);
		for (int i = startIn; i <= endIn; i++)
			if (in[i] == pre[startPre]) {
				root.left = reConstructBinaryTree(pre, startPre + 1, startPre + i - startIn, in, startIn, i - 1);
				root.right = reConstructBinaryTree(pre, i - startIn + startPre + 1, endPre, in, i + 1, endIn);
				break;
			}
		return root;
	}
}

代码2:

public class Solution {
    	// 主函数,用于测试结果
    	public static void main(String[] args) {
    		int[] pre = { 1, 2, 4, 7, 3, 5, 6, 8 };
    		int[] in = { 4, 7, 2, 1, 5, 3, 8, 6 };
    		TreeNode tree = reConstructBinaryTree(pre, in);
    		System.out.print("先序遍历结果: ");
    		preTraverseBinTree(tree);
    		System.out.println();
    		System.out.print("中序遍历结果: ");
    		inTraverseBinTree(tree);
    		System.out.println();
    		System.out.print("后序遍历结果: ");
    		postTraverseBinTree(tree);
    		System.out.println();
    	}
    
    	// 主功能函数
    	public static TreeNode reConstructBinaryTree(int[] pre, int[] in) {
    		if (pre == null || in == null) {
    			return null;
    		}
    		TreeNode tn = reConstructBinaryTreeCore(pre, in, 0, pre.length - 1, 0, in.length - 1);
    		return tn;
    	}
    
    	// 核心递归
    	public static TreeNode reConstructBinaryTreeCore(int[] pre, int[] in, int preStart, int preEnd, int inStart,
    			int inEnd) {
    		TreeNode tree = new TreeNode(pre[preStart]);
    		tree.left = null;
    		tree.right = null;
    		if (preStart == preEnd && inStart == inEnd) {
    			return tree;
    		}
    		int root = 0;
    		for (root = inStart; root < inEnd; root++) {
    			if (pre[preStart] == in[root]) {
    				break;
    			}
    		}
    		int leifLength = root - inStart;
    		int rightLength = inEnd - root;
    		if (leifLength > 0) {
    			tree.left = reConstructBinaryTreeCore(pre, in, preStart + 1, preStart + leifLength, inStart, root - 1);
    		}
    		if (rightLength > 0) {
    			tree.right = reConstructBinaryTreeCore(pre, in, preStart + 1 + leifLength, preEnd, root + 1, inEnd);
    		}
    		return tree;
    	}
    
    	// 将二叉树先序遍历,用于测试结果
    	public static void preTraverseBinTree(TreeNode node) {
    		if (node == null) {
    			return;
    		}
    		System.out.print(node.val + " ");
    		if (node.left != null) {
    			preTraverseBinTree(node.left);
    		}
    		if (node.right != null) {
    			preTraverseBinTree(node.right);
    		}
    	}
    
    	// 将二叉树中序遍历,用于测试结果
    	public static void inTraverseBinTree(TreeNode node) {
    		if (node == null) {
    			return;
    		}
    		if (node.left != null) {
    			inTraverseBinTree(node.left);
    		}
    		System.out.print(node.val + " ");
    		if (node.right != null) {
    			inTraverseBinTree(node.right);
    		}
    	}
    
    	// 将二叉树后序遍历,用于测试结果
    	public static void postTraverseBinTree(TreeNode node) {
    		if (node == null) {
    			return;
    		}
    		if (node.left != null) {
    			postTraverseBinTree(node.left);
    		}
    		if (node.right != null) {
    			postTraverseBinTree(node.right);
    		}
    		System.out.print(node.val + " ");
    	}
    }

你可能感兴趣的:(算法)