【Android应用源码分析】Java多线程:线程本地变量ThreadLocal源码分析

ThreadLocal简介

线程本地变量ThreadLocal为变量在每个线程中都创建了一个副本,每个线程可以访问自己内部的副本变量,不能访问其他线程的该变量,线程之间互不影响。即变量是线程内共享的,线程间互斥的。


ThreadLocal类源码分析

本文通过jdk1.7)中的ThreaLocal类进行解析:

package java.lang;
import java.lang.ref.*;
import java.util.concurrent.atomic.AtomicInteger;

public class ThreadLocal {

    private final int threadLocalHashCode = nextHashCode();  //ThreadLocal实例hash值,用来区分不同实例

    private static AtomicInteger nextHashCode =         //可以看作hash值的一个基值
        new AtomicInteger();

    private static final int HASH_INCREMENT = 0x61c88647;   //hash值每次增加量

    private static int nextHashCode() {
        return nextHashCode.getAndAdd(HASH_INCREMENT);
    }
    /* 返回此线程局部变量的当前线程的初始值。最多在每次访问线程来获得每个线程局部变量时调用此方法一次,即线程第一次
 使用 get() 方法访问变量的时候。如果线程先于 get 方法调用 set(T) 方法,则不会在线程中再调用 
 initialValue 方法。 该实现只返回 null;如果程序员希望将线程局部变量初始化为 null 以外的某个值,
 则必须为 ThreadLocal 创建子类,并重写此方法。通常,将使用匿名内部类。initialValue 的典型实现
 将调用一个适当的构造方法,并返回新构造的对象。
    返回:
    返回此线程局部变量的初始值*/
    protected T initialValue() {  
        return null;
    }
    //无参构造函数
    public ThreadLocal() {
    }
    //注意:每个线程中都是有一个ThreadLocalMap对象,它属于Map类型,其中key为ThreadLocal对象,value为某个对象。
   //从当前线程的ThreadLocalMap中取出 key为当前ThreadLocal对象 的value对象,其实key值与ThreadLocal的threadLocalHashCode值有关
   /*    返回此线程局部变量的当前线程副本中的值。如果这是线程第一次调用该方法,则创建并初始化此副本。 

    返回:
    此线程局部变量的当前线程的值*/
    public T get() {
        Thread t = Thread.currentThread();   //得到当前线程
        ThreadLocalMap map = getMap(t);     //得到当前线程的ThreadLocalMap对象
        if (map != null) {      //如果map不为null,
            ThreadLocalMap.Entry e = map.getEntry(this);  //得到map中Entry实体对象;
            if (e != null)   //如果e不为空,则取出Entry对象中的value值,然后返回
                return (T)e.value;
        }
        return setInitialValue();  //如果map为null,则创建ThreadLocalMap对象,
                                   //并且创建一个空的T对象放到map中,最后返回null
    }


    private T setInitialValue() {
        T value = initialValue();   
        Thread t = Thread.currentThread();  //得到当前线程
        ThreadLocalMap map = getMap(t);  //得到当前线程的ThreadLocalMap对象
        if (map != null)          //map不为空,则将value放到map
            map.set(this, value);
        else
            createMap(t, value);   //否则创建map,然后将value放到map中
        return value;
    }
    //把value放到当前线程的ThreadLocalMap对象中去,其中key值与当前ThreadLocal对象的threadLocalHashCode值有关
    /*    将此线程局部变量的当前线程副本中的值设置为指定值。许多应用程序不需要这项功能,它们只依赖于 
    initialValue() 方法来设置线程局部变量的值。 

    参数:
    value - 存储在此线程局部变量的当前线程副本中的值。*/
    public void set(T value) {
        Thread t = Thread.currentThread();
        ThreadLocalMap map = getMap(t);
        if (map != null)
            map.set(this, value);
        else
            createMap(t, value);
    }
    //删除当前线程的 ThreadLocalMap对象中 key为当前ThreadLocal 的Entry(包含key/value)
    /*    移除此线程局部变量的值。这可能有助于减少线程局部变量的存储需求。如果再次访问此线程局部变量,那么在默认情况下
    它将拥有其 initialValue。*/
    public void remove() {
         ThreadLocalMap m = getMap(Thread.currentThread());
         if (m != null)
             m.remove(this);
     }

    //取得TheadLocalMap
    ThreadLocalMap getMap(Thread t) {
        return t.threadLocals;
    }

    //创建TheadLocalMap
    void createMap(Thread t, T firstValue) {
        t.threadLocals = new ThreadLocalMap(this, firstValue);
    }


    static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
        return new ThreadLocalMap(parentMap);
    }


    T childValue(T parentValue) {
        throw new UnsupportedOperationException();
    }
    //静态内部类ThreadLcoalMap
    static class ThreadLocalMap {

        static class Entry extends WeakReference {
            /** The value associated with this ThreadLocal. */
            Object value;

            Entry(ThreadLocal k, Object v) {
                super(k);
                value = v;
            }
        }

        private static final int INITIAL_CAPACITY = 16;


        private Entry[] table;

        private int size = 0;

        private int threshold; // Default to 0

        private void setThreshold(int len) {
            threshold = len * 2 / 3;
        }

        private static int nextIndex(int i, int len) {
            return ((i + 1 < len) ? i + 1 : 0);
        }

        private static int prevIndex(int i, int len) {
            return ((i - 1 >= 0) ? i - 1 : len - 1);
        }

        ThreadLocalMap(ThreadLocal firstKey, Object firstValue) {
            table = new Entry[INITIAL_CAPACITY];
            int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
            table[i] = new Entry(firstKey, firstValue);
            size = 1;
            setThreshold(INITIAL_CAPACITY);
        }

        private ThreadLocalMap(ThreadLocalMap parentMap) {
            Entry[] parentTable = parentMap.table;
            int len = parentTable.length;
            setThreshold(len);
            table = new Entry[len];

            for (int j = 0; j < len; j++) {
                Entry e = parentTable[j];
                if (e != null) {
                    ThreadLocal key = e.get();
                    if (key != null) {
                        Object value = key.childValue(e.value);
                        Entry c = new Entry(key, value);
                        int h = key.threadLocalHashCode & (len - 1);
                        while (table[h] != null)
                            h = nextIndex(h, len);
                        table[h] = c;
                        size++;
                    }
                }
            }
        }

        private Entry getEntry(ThreadLocal key) {
            int i = key.threadLocalHashCode & (table.length - 1);
            Entry e = table[i];
            if (e != null && e.get() == key)
                return e;
            else
                return getEntryAfterMiss(key, i, e);
        }


        private Entry getEntryAfterMiss(ThreadLocal key, int i, Entry e) {
            Entry[] tab = table;
            int len = tab.length;

            while (e != null) {
                ThreadLocal k = e.get();
                if (k == key)
                    return e;
                if (k == null)
                    expungeStaleEntry(i);
                else
                    i = nextIndex(i, len);
                e = tab[i];
            }
            return null;
        }

        private void set(ThreadLocal key, Object value) {

            // We don't use a fast path as with get() because it is at
            // least as common to use set() to create new entries as
            // it is to replace existing ones, in which case, a fast
            // path would fail more often than not.

            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);

            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                ThreadLocal k = e.get();

                if (k == key) {
                    e.value = value;
                    return;
                }

                if (k == null) {
                    replaceStaleEntry(key, value, i);
                    return;
                }
            }

            tab[i] = new Entry(key, value);
            int sz = ++size;
            if (!cleanSomeSlots(i, sz) && sz >= threshold)
                rehash();
        }

        private void remove(ThreadLocal key) {
            Entry[] tab = table;
            int len = tab.length;
            int i = key.threadLocalHashCode & (len-1);
            for (Entry e = tab[i];
                 e != null;
                 e = tab[i = nextIndex(i, len)]) {
                if (e.get() == key) {
                    e.clear();
                    expungeStaleEntry(i);
                    return;
                }
            }
        }

        private void replaceStaleEntry(ThreadLocal key, Object value,
                                       int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;
            Entry e;

            // Back up to check for prior stale entry in current run.
            // We clean out whole runs at a time to avoid continual
            // incremental rehashing due to garbage collector freeing
            // up refs in bunches (i.e., whenever the collector runs).
            int slotToExpunge = staleSlot;
            for (int i = prevIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = prevIndex(i, len))
                if (e.get() == null)
                    slotToExpunge = i;

            // Find either the key or trailing null slot of run, whichever
            // occurs first
            for (int i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();

                // If we find key, then we need to swap it
                // with the stale entry to maintain hash table order.
                // The newly stale slot, or any other stale slot
                // encountered above it, can then be sent to expungeStaleEntry
                // to remove or rehash all of the other entries in run.
                if (k == key) {
                    e.value = value;

                    tab[i] = tab[staleSlot];
                    tab[staleSlot] = e;

                    // Start expunge at preceding stale entry if it exists
                    if (slotToExpunge == staleSlot)
                        slotToExpunge = i;
                    cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
                    return;
                }

                // If we didn't find stale entry on backward scan, the
                // first stale entry seen while scanning for key is the
                // first still present in the run.
                if (k == null && slotToExpunge == staleSlot)
                    slotToExpunge = i;
            }

            // If key not found, put new entry in stale slot
            tab[staleSlot].value = null;
            tab[staleSlot] = new Entry(key, value);

            // If there are any other stale entries in run, expunge them
            if (slotToExpunge != staleSlot)
                cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
        }


        private int expungeStaleEntry(int staleSlot) {
            Entry[] tab = table;
            int len = tab.length;

            // expunge entry at staleSlot
            tab[staleSlot].value = null;
            tab[staleSlot] = null;
            size--;

            // Rehash until we encounter null
            Entry e;
            int i;
            for (i = nextIndex(staleSlot, len);
                 (e = tab[i]) != null;
                 i = nextIndex(i, len)) {
                ThreadLocal k = e.get();
                if (k == null) {
                    e.value = null;
                    tab[i] = null;
                    size--;
                } else {
                    int h = k.threadLocalHashCode & (len - 1);
                    if (h != i) {
                        tab[i] = null;

                        // Unlike Knuth 6.4 Algorithm R, we must scan until
                        // null because multiple entries could have been stale.
                        while (tab[h] != null)
                            h = nextIndex(h, len);
                        tab[h] = e;
                    }
                }
            }
            return i;
        }

        private boolean cleanSomeSlots(int i, int n) {
            boolean removed = false;
            Entry[] tab = table;
            int len = tab.length;
            do {
                i = nextIndex(i, len);
                Entry e = tab[i];
                if (e != null && e.get() == null) {
                    n = len;
                    removed = true;
                    i = expungeStaleEntry(i);
                }
            } while ( (n >>>= 1) != 0);
            return removed;
        }

        private void rehash() {
            expungeStaleEntries();

            // Use lower threshold for doubling to avoid hysteresis
            if (size >= threshold - threshold / 4)
                resize();
        }

        private void resize() {
            Entry[] oldTab = table;
            int oldLen = oldTab.length;
            int newLen = oldLen * 2;
            Entry[] newTab = new Entry[newLen];
            int count = 0;

            for (int j = 0; j < oldLen; ++j) {
                Entry e = oldTab[j];
                if (e != null) {
                    ThreadLocal k = e.get();
                    if (k == null) {
                        e.value = null; // Help the GC
                    } else {
                        int h = k.threadLocalHashCode & (newLen - 1);
                        while (newTab[h] != null)
                            h = nextIndex(h, newLen);
                        newTab[h] = e;
                        count++;
                    }
                }
            }

            setThreshold(newLen);
            size = count;
            table = newTab;
        }

        private void expungeStaleEntries() {
            Entry[] tab = table;
            int len = tab.length;
            for (int j = 0; j < len; j++) {
                Entry e = tab[j];
                if (e != null && e.get() == null)
                    expungeStaleEntry(j);
            }
        }
    }
}

ThreadLocal源码总结

ThreadLocal类主要提供的四个方法:


public T get() { }

public void set(T value) { }

public void remove() { }

protected T initialValue() { }

get()方法是用来获取ThreadLocal在当前线程中保存的变量副本,set()用来设置当前线程中变量的副本,remove()用来移除当前线程中变量的副本,initialValue()是一个protected方法,一般是用来在使用时进行重写的,它是一个延迟加载方法。
ThreadLocal是如何为每个线程创建变量的副本的:
 首先,在每个线程Thread内部有一个ThreadLocal.ThreadLocalMap类型的成员变量threadLocals,这个threadLocals就是用来存储实际的变量副本的,键值为当前ThreadLocal变量,value为变量副本(即T类型的变量)。

  初始时,在Thread里面,threadLocals为空,当通过ThreadLocal变量调用get()方法或者set()方法,就会对Thread类中的threadLocals进行初始化,并且以当前ThreadLocal变量为键值,以ThreadLocal要保存的副本变量为value,存到threadLocals。

  然后在当前线程里面,如果要使用副本变量,就可以通过get方法在threadLocals里面查找。
总结一下:

  1)实际的通过ThreadLocal创建的副本是存储在每个线程自己的threadLocals中的;

  2)为何threadLocals的类型ThreadLocalMap的键值为ThreadLocal对象,因为每个线程中可有多个threadLocal变量,就像上面代码中的longLocal和stringLocal;

  3)在进行get之前,必须先set,否则会报空指针异常;如果想在get之前不需要调用set就能正常访问的话,必须重写initialValue()方法。如果没有先set的话,即在map中查找不到对应的存储,则会通过调用setInitialValue方法返回i,而在setInitialValue方法中,有一个语句是T value = initialValue(), 而默认情况下,initialValue方法返回的是null。
  4)最常见的ThreadLocal使用场景为 用来解决 数据库连接、Session管理等。

参考文章:
https://passport.csdn.net/account/login?ref=toolbar
http://www.iteye.com/topic/103804
http://www.cnblogs.com/dolphin0520/p/3920407.html
http://blog.csdn.net/imzoer/article/details/8262101

你可能感兴趣的:(Android应用源码分析)