- RAG 检索增强生成:技术详解与应用展望
君君学姐
RAG检索增强生成
RAG检索增强生成:技术详解与应用展望一、引言随着人工智能技术的飞速发展,自然语言处理(NLP)领域迎来了前所未有的变革。其中,检索增强生成(Retrieval-AugmentedGeneration,简称RAG)作为一种新兴的技术框架,正逐渐成为大模型应用中的热门选择。RAG通过结合信息检索(IR)和自然语言生成(NLG)的能力,旨在提升模型在回答问题、生成文本等任务中的准确性和可靠性。本文将深
- RAG检索增强:知识图谱赋能的高效问答系统
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍随着互联网和信息技术的飞速发展,人们获取信息的方式和途径也发生了巨大的变化。传统的搜索引擎已经无法满足用户对于更精准、更个性化、更智能的信息获取需求。问答系统作为一种能够直接回答用户问题的智能系统,应运而生,并逐渐成为信息检索领域的研究热点。早期的问答系统主要基于模板匹配和关键词匹配等方法,其回答准确率和效率都比较低。近年来,随着深度学习技术的兴起,基于深度学习的问答系统取得了显著的进
- 结构化思考和金字塔结构之:信息检索与知识获取
AI天才研究院
架构师必知必会系列编程实践大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术文章目录1.简介2.1概念定义2.2检索阶段2.3提取阶段3.1信息检索和文本信息处理的组成3.2技术总体架构3.3信息检索的关键技术3.3.1倒排索引和TF-IDF权值3.3.1.1倒排索引3.3.1.2TF-IDF权值3.3.2文档集合模型3.3.3语言模型3.3.3.1词袋模型3.3.3.2n-gram模型3.3.4PageRank算法3.3.5信息熵的实体抽取3
- 【菜鸟笔记|算法导论】十大排序算法总结与python实现
武咏歌
算法排序算法
算法导论中提到了七种排序算法,再加上冒泡排序、选择排序、希尔排序,构成我们常说的十大排序算法。其中冒泡、选择、插入、希尔、归并、堆、快速排序都是比较排序算法(即通过对元素进行大小比较来确定顺序);计数、基数、桶排序都是非比较排序算法。十大排序算法的性能比较如下表:下面将简单描述十大排序算法的原理,并分别用python实现。笔记自用就不附原理图了,如果对原理有疑问请参阅算法导论那本书,里面算法运行过
- Deepseek 使用指南与提问优化策略
西瓜拍两瓣
ai语言模型pythongpt
序言随着人工智能技术的迅猛发展,语义搜索已成为提升信息检索效率和用户体验的核心工具。DeepSeek作为一款先进的语义搜索引擎,通过自然语言处理(NLP)和机器学习技术,能够深入理解用户查询的语义意图,提供高度精准的搜索结果。本文将详细介绍DeepSeek的核心功能、集成方法,并深入探讨如何通过优化提问策略,最大化利用DeepSeek的语义搜索能力,从而提升信息检索的效率和准确性。访问DeepSe
- RagFlow专题三、RagFlow 关键技术(向量数据库、文档分块、Prompt 设计与召回排序优化)
伯牙碎琴
大模型prompt大模型AIRagRagFlow
深入解析RagFlow关键技术:向量数据库、文档分块、Prompt设计与召回排序优化在前一篇文章中,我们详细探讨了RagFlow的核心架构,包括数据检索、语义搜索(BM25&向量搜索)以及知识融合,并了解了如何通过RagFlow机制优化信息检索和生成质量。本篇文章将深入解析RagFlow的关键技术,包括:向量数据库(FAISS、Milvus、Elasticsearch)——负责高效的语义检索与存储
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- 《基于鸿蒙系统的类目标签AI功能开发实践》
程序猿阿伟
harmonyos人工智能华为
在数字化时代,类目标签AI功能对于数据管理、信息检索等领域至关重要。本文将聚焦于在HarmonyOSNEXTAPI12及以上版本上,利用Python进行类目标签AI功能开发,以电商商品分类这一行业垂域为例,为开发者提供实操性强的学习资源,助力推动鸿蒙技术应用与创新。一、开发环境搭建在开始开发前,确保已经安装好以下工具:DevEcoStudio:鸿蒙应用开发的官方集成开发环境,可从华为官方网站下载并
- 使用 SK 进行向量操作
后端
使用SK进行向量操作先祝大家2025新年好。在2024年落地的LLM应用来看,基本上都是结合RAG技术来使用的。因为绝大多数人跟公司是没有fine-turning的能力的。不管是在难度还是成本的角度看RAG技术都友好的多。在RAG(Retrieval-AugmentedGeneration)中,向量的意义在于将文本数据转换为高维向量表示,以便进行高效的相似性搜索和信息检索。具体来说,向量在RAG中
- 【大模型】RAG检索增强生成
油泼辣子多加
深度学习算法chatgpt
RAG(Retrieval-AugmentedGeneration)是一种结合了信息检索(Retrieval)和生成(Generation)模型的混合型大模型架构,旨在解决传统生成模型在处理大规模外部知识时的局限性。简单来说,RAG通过在生成过程之前引入检索步骤,使得生成模型可以利用外部文档或知识库来增强其生成能力,提升对复杂问题的回答准确性。一、RAG的工作原理:检索阶段(Retrieval):
- 自然语言处理之语法解析:BERT:自然语言处理基础理论
zhubeibei168
自然语言处理1024程序员节自然语言处理bert语音识别人工智能
自然语言处理之语法解析:BERT:自然语言处理基础理论自然语言处理基础自然语言处理的定义与应用自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于20世纪50年代,随着计算机技术的飞速发展,NLP技术在信息检索、文本挖掘、语音识别、机器翻译、情
- 在nodejs中使用ElasticSearch(三)通过ES语义检索,实现RAG
konglong127
nodejselasticsearch搜索引擎node.js全文检索后端
RAG(Retrieval-AugmentedGeneration)是一种结合了信息检索和生成模型的技术,旨在提高生成模型的知识获取和生成能力。它通过在生成的过程中引入外部知识库或文档(如数据库、搜索引擎或文档存储),帮助生成更为准确和丰富的答案。RAG在自然语言处理(NLP)领域,特别是在对话生成、问答系统和文本摘要等任务中,具有非常重要的应用。它的核心思想是,生成模型不仅依赖于模型内部的知识,
- Datawhale 数学建模导论国赛B学习笔记
瓜瓜蛋
数学建模学习笔记
贪心算法贪心算法(Greedyalgorithm)(贪婪算法)基本思想:多机调度问题是一个多项式复杂程度的非确定性问题(Non-deterministicPolynomial),具有一定的复杂程度,当前没有有效的解决方法。相较于其它算法,贪心算法求解不从整体最优上加以考虑,。而是寻求某种意义上的局部最优解,从而做出当下最好的选择。因此,在求解并行机调度问题上,贪心算法容易获得近似最优解的答案,更有
- 网络安全导论PDF
网络安全Ash
pdf
点击文末小卡片,免费获取网络安全全套资料,资料在手,涨薪更快这份重点是在准备复试时边看书和ppt边手打的。掐指一算已经是整整一个月前的事情惹。这本教材是哈工程复试参考书目,但是网络上关于它的材料比较少。把自己整理的重点放上来,希望能帮到期末、复试以及自学网络安全的小可爱♥网络安全2.1基本协议ARP地址解析协议:将局域网中的32bitIP地址→48bit物理地址(网卡的MAC地址)ARP欺骗:计算
- Apache Lucene 详解及示例
微笑听雨。
java进阶教程apachelucenejava全文检索
ApacheLucene详解及示例1.简介ApacheLucene是一个开源的高性能全文搜索引擎库,广泛应用于构建各种搜索系统和信息检索应用。Lucene提供了丰富的API来进行索引和搜索,支持高效的文本处理和查询。本文将深入解析Lucene的核心概念和主要功能,并通过示例代码演示其使用方法。2.核心概念2.1倒排索引倒排索引(InvertedIndex)是Lucene的核心数据结构。它将文档中的
- 使用 Weaviate 执行 RAG (Retriever-Augmented Generation)
bavDHAUO
python
RAG(Retriever-AugmentedGeneration)是当前AI领域中频繁使用的技术,结合了信息检索与生成模型,可以大幅提升信息获取与生成内容的准确性和丰富度。本文将通过Weaviate数据库和OpenAI模型结合,展示如何实现在实际项目中的应用。技术背景介绍RAG技术结合了检索式模型(例如Weaviate)和生成式模型(例如OpenAI的GPT-3),能够在大量数据中快速找到相关信
- Azure AI Search Retriever 深度指南
bBADAS
azure人工智能flaskpython
技术背景介绍AzureAISearch(前称AzureCognitiveSearch)是微软提供的云端搜索服务,为开发者提供了强大的基础设施、API和工具,以扩展性地进行向量、关键词和混合查询的信息检索。AzureAISearchRetriever是一个集成模块,能够从非结构化查询中返回文档。它基于BaseRetriever类,并针对AzureAISearch的2023-11-01稳定RESTAP
- 使用Google Cloud Vertex AI构建RAG匹配引擎
vaidfl
python
技术背景介绍RAG(Retrieval-AugmentedGeneration)是一种结合信息检索和生成技术的框架。在GoogleCloudPlatform的VertexAI中,我们可以利用MatchingEngine来快速高效地从大规模的数据集中检索相关文档或上下文。利用预先创建的索引,RAG能够根据用户提供的问题检索到最有用的信息,并辅助生成更精确的回答。核心原理解析RAG匹配引擎在Verte
- 使用HyDE进行高效文档检索:原理与实战
eahba
python
近年来,信息检索领域取得了长足的进步,其中HypotheticalDocumentEmbeddings(HyDE)方法引人瞩目。本文将深入解析HyDE的核心原理,并通过实际代码演示,展示如何利用HyDE进行高效的文档检索。一、技术背景介绍HyDE,全称HypotheticalDocumentEmbeddings,是一种增强检索的方法。它的核心理念在于,对输入查询生成一个假设文档,将该文档进行嵌入,
- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- 软件工程应试复习(考试折磨版)
愚戏师
软件工程
针对学校软件工程考试,参考教材《软件工程导论(第6版)》1-8章学习的艺术:不断地尝试,我一定会找到高效用的方法,让学习变成一门艺术,从应试备考中解救出我的时间同胞们。好嘞!既然时间紧迫,咱们就用「闪电战」学习法,把知识点当零食一样快速吞下(但记得消化哦)!上攻略三步速成秘籍(测试版):应试求生指南!1.开挂第一步:「抓大放小」狙击战!锁定BOSS级考点:翻开目录,用荧光笔把老师敲黑板的内容(PP
- 极限的定义与求解(微积分前置知识)
Jean·Gunnhildr
Jean带飞你的文化课数学建模高考笔记
文章目录说明第3章极限导论3.1~43.5关于渐近线的两个常见误解3.6三明治定理第4章求解多项式的极限问题4.1x→ax\toax→a时的有理函数的极限4.2x→ax\toax→a时的平方根的极限4.3x→+∞x\to+\inftyx→+∞时的有理函数的极限4.4x→+∞x\to+\inftyx→+∞时多项式型(无理)函数的极限4.5x→−∞x\to-\inftyx→−∞时的有理函数的极限4.6
- 机器人部分专业课
栗少
机器人
华东理工人工智能与机器人导论IntroductionofArtificialIntelligenceandRobots必修考查0.5880116477012程序设计基础TheFundamentalsofProgramming必修考试3643232147450012算法与数据结构AlgorithmandDataStructure必修考试3564016318746020现代电子技术与系统ModernE
- RAG驱动的健康信息检索,三阶段破解健康谣言
Debroon
医疗大模型研发:慢病停药逆转人工智能
RAG驱动的健康信息检索,三阶段破解健康谣言论文大纲1.Why:这个研究要解决什么现实问题2.What:核心发现或论点是什么3.How3.1前人研究的局限性3.2你的创新方法/视角3.3关键数据支持3.4可能的反驳及应对4.HowGood:研究的理论贡献和实践意义解法拆解一、总体解法的拆解逻辑二、逐层拆解:子解法与特征的对应关系1)特征与子解法对应情况三、分析是否存在“隐性方法”四、分析是否有隐性
- RAG+LLM和直接将整理的知识训练到模型中去有什么区别,各自有什么优缺点
MonkeyKing.sun
RAG+LLM训练模型
1.RAG(Retrieval-AugmentedGeneration)+LLM(LargeLanguageModel)概念RAG是将信息检索与生成模型相结合的一种方法。具体来说,RAG会从一个知识库(如数据库、文档库、向量数据库等)中检索相关的信息片段或条目,然后将这些信息与输入的查询一起传递给一个生成模型(如GPT、T5、BERT等)进行回答生成。这个过程通常包括以下步骤:检索:从一个知识库中
- ragflow-RAPTOR到底是什么?请通俗的解释!
愚昧之山绝望之谷开悟之坡
大模型笔记人工智能python
RAPTOR有两种不同的含义,具体取决于上下文:RAPTOR作为一种信息检索技术RAPTOR是一种基于树状结构的信息检索系统,全称为“RecursiveAbstractiveProcessingforTree-OrganizedRetrieval”(递归抽象处理树组织检索)。它的核心思想是通过递归地嵌入、聚类和总结文本块,构建一个多层树状结构。通俗来说,就像把一本书的内容分成章节、小节,然后逐层总
- 短时傅里叶变换(STFT)与逆变换(ISTFT)
niuguangshuo
音频算法python信号处理傅里叶分析
引言短时傅里叶变换(Short-TimeFourierTransform,STFT)是一种将信号分解为时间和频率成分的技术,广泛应用于音频处理、语音分析和音乐信息检索等领域。通过STFT,我们可以分析信号在不同时间段的频率特性。本文将介绍STFT的基本原理、计算过程、输入和输出维度,以及如何使用逆短时傅里叶变换(InverseShort-TimeFourierTransform,ISTFT)将频域
- 巧用 PasteMate,联合 DeepSeek 与 LaTeX 高效生成 PDF 文档
邢树军
pdf
在信息爆炸的时代,学术研究、技术写作等工作常常需要快速搜集信息并将其整理成规范的文档格式。PasteMate作为一款强大的复制粘贴工具,与前沿的AI模型DeepSeek以及专业排版系统LaTeX相结合,能为我们提供高效且便捷的信息处理与文档生成方案。PasteMate官网:PasteMate一、借助DeepSeek极速搜集信息DeepSeek作为先进的AI工具,具备强大的自然语言处理能力和信息检索
- 考研冲刺 | 972背诵知识清单
是希望
川大972信息检索图书馆学情报学档案学四川大学考研972知识清单
文章目录前言第一章信息检索概述第二章信息检索的方法与技术第三章搜索引擎第四章国内重要的综合性信息检索系统第五章国外重要的综合性信息检索系统第六章专业性书目信息检索系统第七章专类信息检索第八章移动搜索第九章网络信息检索与利用中的有关问题第十章信息检索的主要应用前言参考书目:《信息检索(第三版)》黄如花本清单的序号上接667知识点|经过三年实战检验的667知识清单本知识清单可基本解决辨析题和问答题(共
- Neo4j父子节点向量检索:平衡精确嵌入和上下文保留的高效方案
jaioyfpo
neo4jpython
Neo4j父子节点向量检索:平衡精确嵌入和上下文保留的高效方案引言在自然语言处理和信息检索领域,如何在保持上下文的同时实现精确的文本嵌入一直是一个挑战。本文将介绍一种基于Neo4j图数据库的创新解决方案,通过父子节点结构和向量索引,实现了精确嵌入和上下文保留的平衡。这种方法不仅提高了检索的准确性,还保持了文本的语义完整性。主要内容1.方案概述该方案的核心思想是将文档分割成较大的"父"块和较小的"子
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro