- 深入理解 MultiQueryRetriever:提升向量数据库检索效果的强大工具
nseejrukjhad
数据库python
深入理解MultiQueryRetriever:提升向量数据库检索效果的强大工具引言在人工智能和自然语言处理领域,高效准确的信息检索一直是一个关键挑战。传统的基于距离的向量数据库检索方法虽然广泛应用,但仍存在一些局限性。本文将介绍一种创新的解决方案:MultiQueryRetriever,它通过自动生成多个查询视角来增强检索效果,提高结果的相关性和多样性。MultiQueryRetriever的工
- FlagEmbedding
吉小雨
python库python
FlagEmbedding教程FlagEmbedding是一个用于生成文本嵌入(textembeddings)的库,适合处理自然语言处理(NLP)中的各种任务。嵌入(embeddings)是将文本表示为连续向量,能够捕捉语义上的相似性,常用于文本分类、聚类、信息检索等场景。官方文档链接:FlagEmbedding官方GitHub一、FlagEmbedding库概述1.1什么是FlagEmbeddi
- 基于深度学习的多模态信息检索
SEU-WYL
深度学习dnn深度学习人工智能
基于深度学习的多模态信息检索(MultimodalInformationRetrieval,MMIR)是指利用深度学习技术,从包含多种模态(如文本、图像、视频、音频等)的数据集中检索出满足用户查询意图的相关信息。这种方法不仅可以处理单一模态的数据,还可以在多种模态之间建立关联,从而更准确地满足用户需求。1.多模态信息检索的挑战异构数据表示:多模态数据通常具有不同的特征和表示形式(如文本的词嵌入与图
- 2019-05-30导论
激情老王
洞察力,看透事物本质的能力,这个和格局有异曲同工之妙,但更能给人以清晰的描述和动感;看透了事物的发展规律,自然规律,才能找到自我追求的动力。系统动力学=要素✖连接关系。
- 机器学习实战笔记5——线性判别分析
绍少阿
机器学习笔记可视化机器学习python人工智能
任务安排1、机器学习导论8、核方法2、KNN及其实现9、稀疏表示3、K-means聚类10、高斯混合模型4、主成分分析11、嵌入学习5、线性判别分析12、强化学习6、贝叶斯方法13、PageRank7、逻辑回归14、深度学习线性判别分析(LDA)Ⅰ核心思想对于同样一件事,站在不同的角度,我们往往会有不同的看法,而降维思想,亦是如此。同上节课一样,我们还是学习降维的算法,只是提供了一种新的角度,由上
- 计算机网络笔记分享(第六章 应用层)
寒页_
计算机网络计算机网络笔记
文章目录六、应用层6.1域名系统DNS解析的两种查询方式6.2文件传送协议FTP简单传输协议TFTP6.3远程终端协议TELNET6.4万维网WWW统一资源定位符URL超文本传输协议HTTP万维网的文档HTML万维网的信息检索系统博客和微博社交网站6.5电子邮件6.6动态主机配置协议DHCP6.7简单网络管理协议SNMP6.8应用进程跨越网络的通信几种常用的系统调用6.9P2P应用介绍学习计算机网
- 「RIA学习力」《学习心理学》No.1,未闻
Nathan_2
「RIA学习力授权导师」便签输出第6期第1天《学习心理学》拆页一来自《第一章学习理论与教学导论》P9(一)学习的定义虽然本书讨论的学习理论之间存在差异,但这些理论在学习上确实有一些基本的确定性的假设。首先,它们都指出学习是人类行为表现performance,又译表现)或行为表现潜能的持久改变。这意味着学习者能够执行一些在学习发生之前不能执行的行动而且不管它们实际上是否有展示新习得行为表现的机会,这
- Python和数据分析:Seaborn新手指南
Python_魔力猿
python数据分析信息可视化
Seaborn是建立在Matplotlib之上的统计数据可视化库,它提供了高级接口和漂亮的默认样式,使得数据可视化变得更加简单和美观。1.导论Seaborn在数据可视化中的角色和优势体现在以下方面:简化API:Seaborn的API设计更加简洁,容易使用,尤其适合初学者。它能够通过几行代码生成漂亮而具有信息含量的图表。美观的默认样式:Seaborn具有吸引人的默认颜色和样式,无需额外的配置即可生成
- 德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第十一周) - 自然语言处理扩展研究
Encarta1993
自然语言处理自然语言处理人工智能
自然语言处理扩展研究1.多语言研究2.语言锚定3.伦理问题1.多语言研究多语言(Multilinguality)是NLP的一个重要研究方向,旨在开发能够处理多种语言的模型和算法。由于不同语言在语法、词汇和语义结构上存在差异,这成为一个复杂且具有挑战性的研究领域。多语言性的研究促进了机器翻译、跨语言信息检索和多语言对话系统等应用的发展。以下是多语言的几个主要研究方向和重要技术:多语言模型的构建,开发
- 【人工智能导论】吃豆人游戏(上):对抗搜索与Minimax算法
Pericles_HAT
算法python人工智能游戏广度搜索
吃豆人实验(ThePac-ManProject)简介ThePac-ManprojectsweredevelopedforUCBerkeley’sintroductoryartificialintelligencecourse,CS188.TheyapplyanarrayofAItechniquestoplayingPac-Man.Theprojectsallowstudentstovisualiz
- 读书笔记|《乌合之众》
玛格丽特昭
导论:思想、观念和信念的改变,是促成文明变革的唯一重要变化。人类最稳定的因素就是他们世代相传的思维定势。人类思想转变的关键时刻:一、宗教、政治和社会信仰的毁灭,而他们是人类文明存在的根基二、现代科学和工业的新发现,它们创造了一种全新的生存和思想条件。在这个过渡时期,最引人注意的特点是各阶层的民众逐渐进入国家政治生活,慢慢成了统治阶层。群众的势力不断壮大,首先得益于某些观念的广泛传播,慢慢地在人们头
- 【区块链 + 人才服务】区块链综合实训平台 | FISCO BCOS应用案例 | FISCO BCOS应用案例
FISCO_BCOS
2023FISCOBCOS产业应用发展报告区块链人才服务
区块链综合实训平台由秉蔚信息面向高校区块链专业开发,是一款集软硬件于一体的实验实训产品。该产品填补了高校区块链相关专业和课程在实验室实训环节的空缺,覆盖了区块链原理与技术、区块链开发、区块链运维、区块链安全、区块链实训案例等核心实训教学资源,分层次地融入到实训教学中去,为高校的区块链实验实训提供领先的一体化实验教学环境。平台内置丰富的实验教学资源,课程涵盖区块链导论、区块链密码学应用、区块链网络与
- 基于 React & TypeScript & Webpack 的微前端应用模板
weixin_33806300
前端webpackjavascriptViewUI
m-fe/react-ts-webpack在Web开发导论/微前端与大前端一文中,笔者简述了微服务与微前端的设计理念以及微前端的潜在可行方案。微服务与微前端,都是希望将某个单一的单体应用,转化为多个可以独立运行、独立开发、独立部署、独立维护的服务或者应用的聚合,从而满足业务快速变化及分布式多团队并行开发的需求。如康威定律(Conway’sLaw)所言,设计系统的组织,其产生的设计和架构等价于组织间
- 【机器学习】朴素贝叶斯方法的概率图表示以及贝叶斯统计中的共轭先验方法
Lossya
机器学习概率论人工智能朴素贝叶斯共轭先验
引言朴素贝叶斯方法是一种基于贝叶斯定理的简单概率模型,它假设特征之间相互独立。文章目录引言一、朴素贝叶斯方法的概率图表示1.1节点表示1.2边表示1.3无其他连接1.4总结二、朴素贝叶斯的应用场景2.1文本分类2.2推荐系统2.3医疗诊断2.4欺诈检测2.5情感分析2.6邮件过滤2.7信息检索2.8生物信息学三、朴素贝叶斯的优点四、朴素贝叶斯的局限性4.1特征独立性假设4.2敏感于输入数据的表示4
- 爬取微博热搜榜
带刺的厚崽
python数据挖掘开发语言
201911081102汤昕宇现代信息检索导论实验一程序运行的截图:[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-GimpWjCB-1639531088565)(程序运行截图.png)]当时微博热搜的截图[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-lDXRgrxa-1639531088568)(微博热搜截图.png)]对应的CSV截
- 使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践
qq_37836323
java前端服务器python
使用DuckDuckGo搜索API进行智能信息检索:实用指南与最佳实践1.引言在当今信息爆炸的时代,快速准确地获取所需信息变得越来越重要。DuckDuckGo作为一个注重隐私的搜索引擎,不仅为普通用户提供了优质的搜索服务,还为开发者提供了强大的搜索API。本文将深入探讨如何利用DuckDuckGo搜索API进行智能信息检索,并提供实用的代码示例和最佳实践。2.DuckDuckGo搜索API概述Du
- GitHub每周最火火火项目(8.26-9.1)
FutureUniant
Github周推github音视频人工智能计算机视觉ai
项目名称:Cinnamon/kotaemon项目介绍:kotaemon是一个基于开源RAG(检索增强生成)的工具,旨在实现与文档的聊天交互。它为用户提供了一种便捷的方式来与自己的文档进行对话,通过检索文档中的信息来回答用户的问题。这使得用户能够更高效地获取文档中的知识,提高信息检索和利用的效率。项目地址:https://github.com/Cinnamon/kotaemon项目名称:frappe
- 2020/2/18,晴。《童年的秘密》读书笔记。P9-27
刘霞辉
2020/2/18,晴。《童年的秘密》读书笔记。P9-27在这一部分主要就《童年秘密》这一本书做了一个概括。全书除“导论”外分为三个部分,共30章。本书主要是针对6岁以下儿童的生理和心理发展及其特点进行探讨,本书一共从四个方面进行了论述:幼儿生理和心理的发展、幼儿教育的原则及环境、幼儿心理歧变的分析、成人与儿童冲突的客服。一,幼儿生理和心理的发展。儿童时期是人一生发展的最重要时期,幼儿处在不断生长
- 国开(电大)2024秋《文献检索与论文写作》综合练习2
电大题园(1)
学习方法经验分享笔记
国开(电大)2024秋《文献检索与论文写作》综合练习2一、单选题(14题)1.什么数据库为用户提供深入到图书章节和内容的全文检索(C)A、知网B、万方C、读秀知识库D、维普解析:“读秀”是由海量全文数据及资料基本信息组成的超大型数据库,为用户提供深入到图书章节和内容的全文检索。2.信息检索根据检索对象不同,一般分为:(D)A、二次检索、高级检索B、分类检索、主题检索C、计算机检索、手工检索D、数据
- 偏见的亮点:认知偏见如何增强推荐系统
量子位AI
人工智能机器学习
认知偏见,曾被视为人类决策过程中的缺陷,现在被认为对学习和决策有潜在的积极影响。然而,在机器学习中,尤其是在搜索和排序系统中,认知偏见的研究仍需改进。尽管有大量研究集中在探讨这些偏见如何影响模型训练和机器行为的道德性,但信息检索领域大多关注于检测偏见及其对搜索行为的影响。这在利用这些认知偏见来增强检索算法方面带来了挑战,这一领域尚未广泛探讨,对研究者而言提供了机遇和挑战。现有的一些方法,如推荐系统
- 【书摘】俞可平丨《社群主义》- 个人与社群
杨原平
原文链接《社群主义》俞可平著中国社会科学出版社;1998-07。---正文约17600字,黑体字为本编标。编录:杨原平。---第二部分个人与社群5.自我与个人p446.社群p557.成员资格p688.公民资格p72目录前言…(1)导论…(1)第一部分当代西方政治哲学的流变…(6)1、功利主义…(7)2、新自由主义…(14)3、社群主义及其对新自由主义的批评…(21)4、新自由主义对社群主义批评的反
- 每天一个数据分析题(五百二十一)- 词袋模型
跟着紫枫学姐学CDA
数据分析题库数据分析
词袋模型(英语:Bag-of-wordsmodel)是个在自然语言处理和信息检索(IR)下被简化的表达模型。以下关于词袋模型(BagofWord,BoW)的说法正确的是?A.将所有词语装进一个袋子里,不考虑其词法和语序的问题,即每个词语都是独立的B.词袋模型只能应用在文件分类C.CBOW是词袋模型的一种D.GloVe模型是词袋模型的一种数据分析认证考试介绍:点击进入数据分析考试大纲下载题目来源于C
- 平均精度(Average Precision,AP)以及AP50、AP75、APs、APm、APl、Box AP、Mask AP等不同阈值和细分类别的评估指标说明
fydw_715
深度学习基础分类数据挖掘人工智能
平均精度(AveragePrecision,AP)是信息检索领域和机器学习评价指标中常用的一个衡量方法,特别广泛用于目标检测任务。它在评估模型的表现时结合了准确率(Precision)和召回率(Recall),为我们提供一个综合性的评估指标。关键概念Precision(准确率):精确率表示在模型预测为正例的所有样本中,实际上为正例的比例。它的计算公式为:Precision=TruePositive
- 《刘澜·领导力30讲》笔记 2
greenorchid
导论02讲:用口诀修炼领导力小胜凭智,大胜靠德。-牛根生领导力不是职位,而是行动。领导力十律:1承担责任“我来”2解决难题“我不知道”3密切联系群众“你觉得呢?”4讲故事“我讲个故事”5当老师“我教你”6从失败中学习“失败了?恭喜你!”7反思“我要改变什么?”8反思“为什么?”9认识自己“我是谁?”10成为自己“我该是谁?”领导力是改变本性的修炼,我们可以用领导力口诀来帮助修炼。
- python机器学习算法--贝叶斯算法
在下小天n
机器学习python机器学习算法
1.贝叶斯定理在20世纪60年代初就引入到文字信息检索中,仍然是文字分类的一种热门(基准)方法。文字分类是以词频为特征判断文件所属类型或其他(如垃圾邮件、合法性、新闻分类等)的问题。原理牵涉到概率论的问题,不在详细说明。sklearn.naive_bayes.GaussianNB(priors=None,var_smoothing=1e-09)#Bayes函数·priors:矩阵,shape=[n
- 学习笔记:我的新媒体运营进阶之路(二)
山山而川_Y
进入到学习的第二阶段,有了前面的导论铺垫后,可以说是渐渐进入了学习状态。工作日每天晚上八点准时开启学习,根据当日任务和学习状态灵活调整学习时间。本阶段主要学习了新媒体应用传播学和着陆页实战课程。新媒体应用传播学:重点学习了线性传播的线性视角、非线性视角、文化视角、影响力六原则。新媒体着陆页实战:在此门课程中学习了着陆页经典的八大结构:价值定位、行动呼唤、产品特征、信用背书、用户评价、风险承诺、常见
- WeKnow-RAG:智能自适应的检索增强生成方法
步子哥
人工智能
在当今快速发展的人工智能领域,检索增强生成(Retrieval-AugmentedGeneration,RAG)方法逐渐成为一种新兴的解决方案。CobusGreyling在他最新的文章中深入探讨了WeKnow-RAG,这一方法通过结合知识图谱和网络搜索技术,极大地提升了大型语言模型(LLMs)在复杂查询中的表现。知识图谱的力量知识图谱(KnowledgeGraphs,KGs)作为信息检索的重要工具
- ChatGPT 3.5/4.0简单使用手册
老童聊AI
明哥陪你学Pythonchatgpt
ChatGPT3.5/4.0是一种先进的人工智能聊天机器人,能够理解和生成自然语言文本,为用户提供信息检索、问题解答、语言翻译等服务。系统要求操作系统:无特定要求,支持主流操作系统。网络连接:需要稳定的网络连接来使用在线服务。安装与注册访问ChatGPT官方网站或下载相应的应用程序。创建账户:根据网站或应用程序的指示完成注册流程。登录:使用注册的账户信息登录。备注:因为国内环境原因,所以我们不得以
- 缓存与数据库的数据一致性解决方案分析
Do&Feel
Java缓存数据库java
在现代应用中,缓存技术的使用广泛且至关重要,主要是为了提高数据访问速度和优化系统整体性能。缓存通过在内存或更快速的存储系统中存储经常访问的数据副本,使得数据检索变得迅速,从而避免了每次请求都需要从较慢的主存储(如硬盘或远程数据库)中读取数据的延迟。这种技术特别适用于读取操作远多于写入操作的场景,如网页浏览、内容分发网络(CDN)和大规模的信息检索系统等。缓存的实现方式多样,包括但不限于内存缓存、分
- 国产智能搜索MindSearch∶ 能够在不到3分钟内收集并整合300多页相关信息?
百态老人
人工智能笔记
MindSearch是一款由上海人工智能实验室推出的国产智能搜索工具,具有强大的自然语言处理和机器学习能力,旨在提供高效、精准的信息检索服务。它能够通过自然语言查询快速在各种文件格式(如PDF、DOCX、TXT)中找到所需信息,并利用人工智能技术提供即时答案和相关搜索结果。MindSearch不仅是一个独立的搜索引擎平台,还提供了一个开源的AI搜索引擎框架,用户可以使用闭源或开源的大语言模型(LL
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro