Device Tree中的.dts和dtsi文件介绍

1.    ARM Device Tree起源

Linus Torvalds在2011年3月17日的ARM Linux邮件列表宣称“this whole ARM thing is a f*cking pain in the ass”,引发ARM Linux社区的地震,随后ARM社区进行了一系列的重大修正。在过去的ARM Linux中,arch/arm/plat-xxx和arch/arm/mach-xxx中充斥着大量的垃圾代码,相当多数的代码只是在描述板级细节,而这些板级细节对于内核来讲,不过是垃圾,如板上的platform设备、resource、i2c_board_info、spi_board_info以及各种硬件的platform_data。读者有兴趣可以统计下常见的s3c2410、s3c6410等板级目录,代码量在数万行。
社区必须改变这种局面,于是PowerPC等其他体系架构下已经使用的Flattened Device Tree(FDT)进入ARM社区的视野。Device Tree是一种描述硬件的数据结构,它起源于 OpenFirmware (OF)。在Linux 2.6中,ARM架构的板极硬件细节过多地被硬编码在arch/arm/plat-xxx和arch/arm/mach-xxx,采用Device Tree后,许多硬件的细节可以直接透过它传递给Linux,而不再需要在kernel中进行大量的冗余编码。
Device Tree由一系列被命名的结点(node)和属性(property)组成,而结点本身可包含子结点。所谓属性,其实就是成对出现的name和value。在Device Tree中,可描述的信息包括(原先这些信息大多被hard code到kernel中):
  • CPU的数量和类别
  • 内存基地址和大小
  • 总线和桥
  • 外设连接
  • 中断控制器和中断使用情况
  • GPIO控制器和GPIO使用情况
  • Clock控制器和Clock使用情况
它基本上就是画一棵电路板上CPU、总线、设备组成的树,Bootloader会将这棵树传递给内核,然后内核可以识别这棵树,并根据它展开出Linux内核中的platform_device、i2c_client、spi_device等设备,而这些设备用到的内存、IRQ等资源,也被传递给了内核,内核会将这些资源绑定给展开的相应的设备。

2.    Device Tree组成和结构

整个Device Tree牵涉面比较广,即增加了新的用于描述设备硬件信息的文本格式,又增加了编译这一文本的工具,同时Bootloader也需要支持将编译后的Device Tree传递给Linux内核。

DTS (device tree source)

.dts文件是一种ASCII 文本格式的Device Tree描述,此文本格式非常人性化,适合人类的阅读习惯。基本上,在ARM Linux在,一个.dts文件对应一个ARM的machine,一般放置在内核的arch/arm/boot/dts/目录。由于一个SoC可能对应多个machine(一个SoC可以对应多个产品和电路板),势必这些.dts文件需包含许多共同的部分,Linux内核为了简化,把SoC公用的部分或者多个machine共同的部分一般提炼为.dtsi,类似于C语言的头文件。其他的machine对应的.dts就include这个.dtsi。譬如,对于VEXPRESS而言,vexpress-v2m.dtsi就被vexpress-v2p-ca9.dts所引用, vexpress-v2p-ca9.dts有如下一行:
/include/ "vexpress-v2m.dtsi"
当然,和C语言的头文件类似,.dtsi也可以include其他的.dtsi,譬如几乎所有的ARM SoC的.dtsi都引用了skeleton.dtsi。
.dts(或者其include的.dtsi)基本元素即为前文所述的结点和属性:
[plain]  view plain  copy
  1. / {  
  2.     node1 {  
  3.         a-string-property = "A string";  
  4.         a-string-list-property = "first string", "second string";  
  5.         a-byte-data-property = [0x01 0x23 0x34 0x56];  
  6.         child-node1 {  
  7.             first-child-property;  
  8.             second-child-property = <1>;  
  9.             a-string-property = "Hello, world";  
  10.         };  
  11.         child-node2 {  
  12.         };  
  13.     };  
  14.     node2 {  
  15.         an-empty-property;  
  16.         a-cell-property = <1 2 3 4>; /* each number (cell) is a uint32 */  
  17.         child-node1 {  
  18.         };  
  19.     };  
  20. };  
上述.dts文件并没有什么真实的用途,但它基本表征了一个Device Tree源文件的结构:
1个root结点"/";
root结点下面含一系列子结点,本例中为"node1" 和 "node2";
结点"node1"下又含有一系列子结点,本例中为"child-node1" 和 "child-node2";
各结点都有一系列属性。这些属性可能为空,如" an-empty-property";可能为字符串,如"a-string-property";可能为字符串数组,如"a-string-list-property";可能为Cells(由u32整数组成),如"second-child-property",可能为二进制数,如"a-byte-data-property"。
下面以一个最简单的machine为例来看如何写一个.dts文件。假设此machine的配置如下:
1个双核ARM Cortex-A9 32位处理器;
ARM的local bus上的内存映射区域分布了2个串口(分别位于0x101F1000 和 0x101F2000)、GPIO控制器(位于0x101F3000)、SPI控制器(位于0x10170000)、中断控制器(位于0x10140000)和一个external bus桥;
External bus桥上又连接了SMC SMC91111 Ethernet(位于0x10100000)、I2C控制器(位于0x10160000)、64MB NOR Flash(位于0x30000000);
External bus桥上连接的I2C控制器所对应的I2C总线上又连接了Maxim DS1338实时钟(I2C地址为0x58)。
其对应的.dts文件为:
[plain]  view plain  copy
  1. / {  
  2.     compatible = "acme,coyotes-revenge";  
  3.     #address-cells = <1>;  
  4.     #size-cells = <1>;  
  5.     interrupt-parent = <&intc>;  
  6.   
  7.     cpus {  
  8.         #address-cells = <1>;  
  9.         #size-cells = <0>;  
  10.         cpu@0 {  
  11.             compatible = "arm,cortex-a9";  
  12.             reg = <0>;  
  13.         };  
  14.         cpu@1 {  
  15.             compatible = "arm,cortex-a9";  
  16.             reg = <1>;  
  17.         };  
  18.     };  
  19.   
  20.     serial@101f0000 {  
  21.         compatible = "arm,pl011";  
  22.         reg = <0x101f0000 0x1000 >;  
  23.         interrupts = < 1 0 >;  
  24.     };  
  25.   
  26.     serial@101f2000 {  
  27.         compatible = "arm,pl011";  
  28.         reg = <0x101f2000 0x1000 >;  
  29.         interrupts = < 2 0 >;  
  30.     };  
  31.   
  32.     gpio@101f3000 {  
  33.         compatible = "arm,pl061";  
  34.         reg = <0x101f3000 0x1000  
  35.                0x101f4000 0x0010>;  
  36.         interrupts = < 3 0 >;  
  37.     };  
  38.   
  39.     intc: interrupt-controller@10140000 {  
  40.         compatible = "arm,pl190";  
  41.         reg = <0x10140000 0x1000 >;  
  42.         interrupt-controller;  
  43.         #interrupt-cells = <2>;  
  44.     };  
  45.   
  46.     spi@10115000 {  
  47.         compatible = "arm,pl022";  
  48.         reg = <0x10115000 0x1000 >;  
  49.         interrupts = < 4 0 >;  
  50.     };  
  51.   
  52.     external-bus {  
  53.         #address-cells = <2>  
  54.         #size-cells = <1>;  
  55.         ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet  
  56.                   1 0  0x10160000   0x10000     // Chipselect 2, i2c controller  
  57.                   2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash  
  58.   
  59.         ethernet@0,0 {  
  60.             compatible = "smc,smc91c111";  
  61.             reg = <0 0 0x1000>;  
  62.             interrupts = < 5 2 >;  
  63.         };  
  64.   
  65.         i2c@1,0 {  
  66.             compatible = "acme,a1234-i2c-bus";  
  67.             #address-cells = <1>;  
  68.             #size-cells = <0>;  
  69.             reg = <1 0 0x1000>;  
  70.             interrupts = < 6 2 >;  
  71.             rtc@58 {  
  72.                 compatible = "maxim,ds1338";  
  73.                 reg = <58>;  
  74.                 interrupts = < 7 3 >;  
  75.             };  
  76.         };  
  77.   
  78.         flash@2,0 {  
  79.             compatible = "samsung,k8f1315ebm", "cfi-flash";  
  80.             reg = <2 0 0x4000000>;  
  81.         };  
  82.     };  
  83. };  
上述.dts文件中,root结点"/"的compatible 属性compatible = "acme,coyotes-revenge";定义了系统的名称,它的组织形式为:,。Linux内核透过root结点"/"的compatible 属性即可判断它启动的是什么machine。
在.dts文件的每个设备,都有一个compatible 属性,compatible属性用户驱动和设备的绑定。compatible 属性是一个字符串的列表,列表中的第一个字符串表征了结点代表的确切设备,形式为",",其后的字符串表征可兼容的其他设备。可以说前面的是特指,后面的则涵盖更广的范围。如在arch/arm/boot/dts/vexpress-v2m.dtsi中的Flash结点:
[plain]  view plain  copy
  1. flash@0,00000000 {  
  2.      compatible = "arm,vexpress-flash", "cfi-flash";  
  3.      reg = <0 0x00000000 0x04000000>,  
  4.      <1 0x00000000 0x04000000>;  
  5.      bank-width = <4>;  
  6.  };  
compatible属性的第2个字符串"cfi-flash"明显比第1个字符串"arm,vexpress-flash"涵盖的范围更广。
再比如,Freescale MPC8349 SoC含一个串口设备,它实现了国家半导体(National Semiconductor)的ns16550 寄存器接口。则MPC8349串口设备的compatible属性为compatible = "fsl,mpc8349-uart", "ns16550"。其中,fsl,mpc8349-uart指代了确切的设备, ns16550代表该设备与National Semiconductor 的16550 UART保持了寄存器兼容。
接下来root结点"/"的cpus子结点下面又包含2个cpu子结点,描述了此machine上的2个CPU,并且二者的compatible 属性为"arm,cortex-a9"。
注意cpus和cpus的2个cpu子结点的命名,它们遵循的组织形式为:[@],<>中的内容是必选项,[]中的则为可选项。name是一个ASCII字符串,用于描述结点对应的设备类型,如3com Ethernet适配器对应的结点name宜为ethernet,而不是3com509。如果一个结点描述的设备有地址,则应该给出@unit-address。多个相同类型设备结点的name可以一样,只要unit-address不同即可,如本例中含有cpu@0、cpu@1以及serial@101f0000与serial@101f2000这样的同名结点。设备的unit-address地址也经常在其对应结点的reg属性中给出。ePAPR标准给出了结点命名的规范。
可寻址的设备使用如下信息来在Device Tree中编码地址信息:
  •     reg
  •     #address-cells
  •     #size-cells
其中reg的组织形式为reg = ,其中的每一组address length表明了设备使用的一个地址范围。address为1个或多个32位的整型(即cell),而length则为cell的列表或者为空(若#size-cells = 0)。address 和 length 字段是可变长的,父结点的#address-cells和#size-cells分别决定了子结点的reg属性的address和length字段的长度。在本例中,root结点的#address-cells = <1>;和#size-cells = <1>;决定了serial、gpio、spi等结点的address和length字段的长度分别为1。cpus 结点的#address-cells = <1>;和#size-cells = <0>;决定了2个cpu子结点的address为1,而length为空,于是形成了2个cpu的reg = <0>;和reg = <1>;。external-bus结点的#address-cells = <2>和#size-cells = <1>;决定了其下的ethernet、i2c、flash的reg字段形如reg = <0 0 0x1000>;、reg = <1 0 0x1000>;和reg = <2 0 0x4000000>;。其中,address字段长度为0,开始的第一个cell(0、1、2)是对应的片选,第2个cell(0,0,0)是相对该片选的基地址,第3个cell(0x1000、0x1000、0x4000000)为length。特别要留意的是i2c结点中定义的 #address-cells = <1>;和#size-cells = <0>;又作用到了I2C总线上连接的RTC,它的address字段为0x58,是设备的I2C地址。
root结点的子结点描述的是CPU的视图,因此root子结点的address区域就直接位于CPU的memory区域。但是,经过总线桥后的address往往需要经过转换才能对应的CPU的memory映射。external-bus的ranges属性定义了经过external-bus桥后的地址范围如何映射到CPU的memory区域。
[plain]  view plain  copy
  1. ranges = <0 0  0x10100000   0x10000     // Chipselect 1, Ethernet  
  2.           1 0  0x10160000   0x10000     // Chipselect 2, i2c controller  
  3.           2 0  0x30000000   0x1000000>; // Chipselect 3, NOR Flash  
ranges是地址转换表,其中的每个项目是一个子地址、父地址以及在子地址空间的大小的映射。映射表中的子地址、父地址分别采用子地址空间的#address-cells和父地址空间的#address-cells大小。对于本例而言,子地址空间的#address-cells为2,父地址空间的#address-cells值为1,因此0 0  0x10100000   0x10000的前2个cell为external-bus后片选0上偏移0,第3个cell表示external-bus后片选0上偏移0的地址空间被映射到CPU的0x10100000位置,第4个cell表示映射的大小为0x10000。ranges的后面2个项目的含义可以类推。
Device Tree中还可以中断连接信息,对于中断控制器而言,它提供如下属性:
interrupt-controller – 这个属性为空,中断控制器应该加上此属性表明自己的身份;
#interrupt-cells – 与#address-cells 和 #size-cells相似,它表明连接此中断控制器的设备的interrupts属性的cell大小。
在整个Device Tree中,与中断相关的属性还包括:
interrupt-parent – 设备结点透过它来指定它所依附的中断控制器的phandle,当结点没有指定interrupt-parent 时,则从父级结点继承。对于本例而言,root结点指定了interrupt-parent = <&intc>;其对应于intc: interrupt-controller@10140000,而root结点的子结点并未指定interrupt-parent,因此它们都继承了intc,即位于0x10140000的中断控制器。
interrupts – 用到了中断的设备结点透过它指定中断号、触发方法等,具体这个属性含有多少个cell,由它依附的中断控制器结点的#interrupt-cells属性决定。而具体每个cell又是什么含义,一般由驱动的实现决定,而且也会在Device Tree的binding文档中说明。譬如,对于ARM GIC中断控制器而言,#interrupt-cells为3,它3个cell的具体含义Documentation/devicetree/bindings/arm/gic.txt就有如下文字说明:
[plain]  view plain  copy
  1. 01   The 1st cell is the interrupt type; 0 for SPI interrupts, 1 for PPI  
  2. 02   interrupts.  
  3. 03  
  4. 04   The 2nd cell contains the interrupt number for the interrupt type.  
  5. 05   SPI interrupts are in the range [0-987].  PPI interrupts are in the  
  6. 06   range [0-15].  
  7. 07  
  8. 08   The 3rd cell is the flags, encoded as follows:  
  9. 09         bits[3:0] trigger type and level flags.  
  10. 10                 1 = low-to-high edge triggered  
  11. 11                 2 = high-to-low edge triggered  
  12. 12                 4 = active high level-sensitive  
  13. 13                 8 = active low level-sensitive  
  14. 14         bits[15:8] PPI interrupt cpu mask.  Each bit corresponds to each of  
  15. 15         the 8 possible cpus attached to the GIC.  A bit set to '1' indicated  
  16. 16         the interrupt is wired to that CPU.  Only valid for PPI interrupts.  
另外,值得注意的是,一个设备还可能用到多个中断号。对于ARM GIC而言,若某设备使用了SPI的168、169号2个中断,而言都是高电平触发,则该设备结点的interrupts属性可定义为:interrupts = <0 168 4>, <0 169 4>;
除了中断以外,在ARM Linux中clock、GPIO、pinmux都可以透过.dts中的结点和属性进行描述。

你可能感兴趣的:(Device,Tree)