x<- c(1.000, 0.846, 0.805, 0.859, 0.473, 0.398, 0.301, 0.382,
0.846, 1.000, 0.881, 0.826, 0.376, 0.326, 0.277, 0.277,
0.805, 0.881, 1.000, 0.801, 0.380, 0.319, 0.237, 0.345,
0.859, 0.826, 0.801, 1.000, 0.436, 0.329, 0.327, 0.365,
0.473, 0.376, 0.380, 0.436, 1.000, 0.762, 0.730, 0.629,
0.398, 0.326, 0.319, 0.329, 0.762, 1.000, 0.583, 0.577,
0.301, 0.277, 0.237, 0.327, 0.730, 0.583, 1.000, 0.539,
0.382, 0.415, 0.345, 0.365, 0.629, 0.577, 0.539, 1.000)
names<-c("身高 x1", "手臂长 x2", "上肢长 x3", "下肢长 x4", "体重 x5", "颈围 x6", "胸围 x7", "胸宽 x8")
r<-matrix(x, nrow=8, dimnames=list(names, names))####构成相关矩阵
facotrs<-factanal(covmat=r,factors=2,n.obs=64,rotation = "varimax")
facotrs
结果如下
Call:
factanal(factors = 2, covmat = r, n.obs = 64, rotation = "varimax")
Uniquenesses:
身高 x1 手臂长 x2 上肢长 x3 下肢长 x4 体重 x5 颈围 x6 胸围 x7 胸宽 x8
0.166 0.110 0.166 0.196 0.099 0.360 0.414 0.538
Loadings:
Factor1 Factor2
身高 x1 0.869 0.282
手臂长 x2 0.929 0.164
上肢长 x3 0.896 0.174
下肢长 x4 0.862 0.247
体重 x5 0.244 0.917
颈围 x6 0.201 0.774
胸围 x7 0.141 0.752
胸宽 x8 0.222 0.643
Factor1 Factor2
SS loadings 3.333 2.618
Proportion Var 0.417 0.327
Cumulative Var 0.417 0.744
Test of the hypothesis that 2 factors are sufficient.
The chi square statistic is 14.51 on 13 degrees of freedom.
The p-value is 0.339