1.graph成员变量有:vertices,edges,triplets.
2.在triplets中,同时记录着edge和vertex
函数分成几大类
图的常用算法是集中抽象到GraphOps这个类中,在Graph里作了隐式转换,将Graph转换为GraphOps,源码如下:
/**
* Implicitly extracts the [[GraphOps]] member from a graph.
*
* To improve modularity the Graph type only contains a small set of basic operations.
* All the convenience operations are defined in the [[GraphOps]] class which may be
* shared across multiple graph implementations.
*/
implicit def graphToGraphOps[VD: ClassTag, ED: ClassTag]
(g: Graph[VD, ED]): GraphOps[VD, ED] = g.ops
支持的操作如下
源码如下:
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.spark.graphx
import scala.reflect.ClassTag
import scala.util.Random
import org.apache.spark.SparkException
import org.apache.spark.SparkContext._
import org.apache.spark.rdd.RDD
import org.apache.spark.graphx.lib._
/**
* Contains additional functionality for [[Graph]]. All operations are expressed in terms of the
* efficient GraphX API. This class is implicitly constructed for each Graph object.
*
* @tparam VD the vertex attribute type
* @tparam ED the edge attribute type
*/
class GraphOps[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED]) extends Serializable {
/** The number of edges in the graph. */
@transient lazy val numEdges: Long = graph.edges.count()
/** The number of vertices in the graph. */
@transient lazy val numVertices: Long = graph.vertices.count()
/**
* The in-degree of each vertex in the graph.
* @note Vertices with no in-edges are not returned in the resulting RDD.
*/
@transient lazy val inDegrees: VertexRDD[Int] =
degreesRDD(EdgeDirection.In).setName("GraphOps.inDegrees")
/**
* The out-degree of each vertex in the graph.
* @note Vertices with no out-edges are not returned in the resulting RDD.
*/
@transient lazy val outDegrees: VertexRDD[Int] =
degreesRDD(EdgeDirection.Out).setName("GraphOps.outDegrees")
/**
* The degree of each vertex in the graph.
* @note Vertices with no edges are not returned in the resulting RDD.
*/
@transient lazy val degrees: VertexRDD[Int] =
degreesRDD(EdgeDirection.Either).setName("GraphOps.degrees")
/**
* Computes the neighboring vertex degrees.
*
* @param edgeDirection the direction along which to collect neighboring vertex attributes
*/
private def degreesRDD(edgeDirection: EdgeDirection): VertexRDD[Int] = {
if (edgeDirection == EdgeDirection.In) {
graph.aggregateMessages(_.sendToDst(1), _ + _, TripletFields.None)
} else if (edgeDirection == EdgeDirection.Out) {
graph.aggregateMessages(_.sendToSrc(1), _ + _, TripletFields.None)
} else { // EdgeDirection.Either
graph.aggregateMessages(ctx => { ctx.sendToSrc(1); ctx.sendToDst(1) }, _ + _,
TripletFields.None)
}
}
/**
* Collect the neighbor vertex ids for each vertex.
*
* @param edgeDirection the direction along which to collect
* neighboring vertices
*
* @return the set of neighboring ids for each vertex
*/
def collectNeighborIds(edgeDirection: EdgeDirection): VertexRDD[Array[VertexId]] = {
val nbrs =
if (edgeDirection == EdgeDirection.Either) {
graph.aggregateMessages[Array[VertexId]](
ctx => { ctx.sendToSrc(Array(ctx.dstId)); ctx.sendToDst(Array(ctx.srcId)) },
_ ++ _, TripletFields.None)
} else if (edgeDirection == EdgeDirection.Out) {
graph.aggregateMessages[Array[VertexId]](
ctx => ctx.sendToSrc(Array(ctx.dstId)),
_ ++ _, TripletFields.None)
} else if (edgeDirection == EdgeDirection.In) {
graph.aggregateMessages[Array[VertexId]](
ctx => ctx.sendToDst(Array(ctx.srcId)),
_ ++ _, TripletFields.None)
} else {
throw new SparkException("It doesn't make sense to collect neighbor ids without a " +
"direction. (EdgeDirection.Both is not supported; use EdgeDirection.Either instead.)")
}
graph.vertices.leftZipJoin(nbrs) { (vid, vdata, nbrsOpt) =>
nbrsOpt.getOrElse(Array.empty[VertexId])
}
} // end of collectNeighborIds
/**
* Collect the neighbor vertex attributes for each vertex.
*
* @note This function could be highly inefficient on power-law
* graphs where high degree vertices may force a large amount of
* information to be collected to a single location.
*
* @param edgeDirection the direction along which to collect
* neighboring vertices
*
* @return the vertex set of neighboring vertex attributes for each vertex
*/
def collectNeighbors(edgeDirection: EdgeDirection): VertexRDD[Array[(VertexId, VD)]] = {
val nbrs = edgeDirection match {
case EdgeDirection.Either =>
graph.aggregateMessages[Array[(VertexId, VD)]](
ctx => {
ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr)))
ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr)))
},
(a, b) => a ++ b, TripletFields.All)
case EdgeDirection.In =>
graph.aggregateMessages[Array[(VertexId, VD)]](
ctx => ctx.sendToDst(Array((ctx.srcId, ctx.srcAttr))),
(a, b) => a ++ b, TripletFields.Src)
case EdgeDirection.Out =>
graph.aggregateMessages[Array[(VertexId, VD)]](
ctx => ctx.sendToSrc(Array((ctx.dstId, ctx.dstAttr))),
(a, b) => a ++ b, TripletFields.Dst)
case EdgeDirection.Both =>
throw new SparkException("collectEdges does not support EdgeDirection.Both. Use" +
"EdgeDirection.Either instead.")
}
graph.vertices.leftJoin(nbrs) { (vid, vdata, nbrsOpt) =>
nbrsOpt.getOrElse(Array.empty[(VertexId, VD)])
}
} // end of collectNeighbor
/**
* Returns an RDD that contains for each vertex v its local edges,
* i.e., the edges that are incident on v, in the user-specified direction.
* Warning: note that singleton vertices, those with no edges in the given
* direction will not be part of the return value.
*
* @note This function could be highly inefficient on power-law
* graphs where high degree vertices may force a large amount of
* information to be collected to a single location.
*
* @param edgeDirection the direction along which to collect
* the local edges of vertices
*
* @return the local edges for each vertex
*/
def collectEdges(edgeDirection: EdgeDirection): VertexRDD[Array[Edge[ED]]] = {
edgeDirection match {
case EdgeDirection.Either =>
graph.aggregateMessages[Array[Edge[ED]]](
ctx => {
ctx.sendToSrc(Array(new Edge(ctx.srcId, ctx.dstId, ctx.attr)))
ctx.sendToDst(Array(new Edge(ctx.srcId, ctx.dstId, ctx.attr)))
},
(a, b) => a ++ b, TripletFields.EdgeOnly)
case EdgeDirection.In =>
graph.aggregateMessages[Array[Edge[ED]]](
ctx => ctx.sendToDst(Array(new Edge(ctx.srcId, ctx.dstId, ctx.attr))),
(a, b) => a ++ b, TripletFields.EdgeOnly)
case EdgeDirection.Out =>
graph.aggregateMessages[Array[Edge[ED]]](
ctx => ctx.sendToSrc(Array(new Edge(ctx.srcId, ctx.dstId, ctx.attr))),
(a, b) => a ++ b, TripletFields.EdgeOnly)
case EdgeDirection.Both =>
throw new SparkException("collectEdges does not support EdgeDirection.Both. Use" +
"EdgeDirection.Either instead.")
}
}
/**
* Join the vertices with an RDD and then apply a function from the
* vertex and RDD entry to a new vertex value. The input table
* should contain at most one entry for each vertex. If no entry is
* provided the map function is skipped and the old value is used.
*
* @tparam U the type of entry in the table of updates
* @param table the table to join with the vertices in the graph.
* The table should contain at most one entry for each vertex.
* @param mapFunc the function used to compute the new vertex
* values. The map function is invoked only for vertices with a
* corresponding entry in the table otherwise the old vertex value
* is used.
*
* @example This function is used to update the vertices with new
* values based on external data. For example we could add the out
* degree to each vertex record
*
* {{{
* val rawGraph: Graph[Int, Int] = GraphLoader.edgeListFile(sc, "webgraph")
* .mapVertices((_, _) => 0)
* val outDeg = rawGraph.outDegrees
* val graph = rawGraph.joinVertices[Int](outDeg)
* ((_, _, outDeg) => outDeg)
* }}}
*
*/
def joinVertices[U: ClassTag](table: RDD[(VertexId, U)])(mapFunc: (VertexId, VD, U) => VD)
: Graph[VD, ED] = {
val uf = (id: VertexId, data: VD, o: Option[U]) => {
o match {
case Some(u) => mapFunc(id, data, u)
case None => data
}
}
graph.outerJoinVertices(table)(uf)
}
/**
* Filter the graph by computing some values to filter on, and applying the predicates.
*
* @param preprocess a function to compute new vertex and edge data before filtering
* @param epred edge pred to filter on after preprocess, see more details under
* [[org.apache.spark.graphx.Graph#subgraph]]
* @param vpred vertex pred to filter on after prerocess, see more details under
* [[org.apache.spark.graphx.Graph#subgraph]]
* @tparam VD2 vertex type the vpred operates on
* @tparam ED2 edge type the epred operates on
* @return a subgraph of the orginal graph, with its data unchanged
*
* @example This function can be used to filter the graph based on some property, without
* changing the vertex and edge values in your program. For example, we could remove the vertices
* in a graph with 0 outdegree
*
* {{{
* graph.filter(
* graph => {
* val degrees: VertexRDD[Int] = graph.outDegrees
* graph.outerJoinVertices(degrees) {(vid, data, deg) => deg.getOrElse(0)}
* },
* vpred = (vid: VertexId, deg:Int) => deg > 0
* )
* }}}
*
*/
def filter[VD2: ClassTag, ED2: ClassTag](
preprocess: Graph[VD, ED] => Graph[VD2, ED2],
epred: (EdgeTriplet[VD2, ED2]) => Boolean = (x: EdgeTriplet[VD2, ED2]) => true,
vpred: (VertexId, VD2) => Boolean = (v: VertexId, d: VD2) => true): Graph[VD, ED] = {
graph.mask(preprocess(graph).subgraph(epred, vpred))
}
/**
* Picks a random vertex from the graph and returns its ID.
*/
def pickRandomVertex(): VertexId = {
val probability = 50.0 / graph.numVertices
var found = false
var retVal: VertexId = null.asInstanceOf[VertexId]
while (!found) {
val selectedVertices = graph.vertices.flatMap { vidVvals =>
if (Random.nextDouble() < probability) { Some(vidVvals._1) }
else { None }
}
if (selectedVertices.count > 1) {
found = true
val collectedVertices = selectedVertices.collect()
retVal = collectedVertices(Random.nextInt(collectedVertices.size))
}
}
retVal
}
/**
* Convert bi-directional edges into uni-directional ones.
* Some graph algorithms (e.g., TriangleCount) assume that an input graph
* has its edges in canonical direction.
* This function rewrites the vertex ids of edges so that srcIds are smaller
* than dstIds, and merges the duplicated edges.
*
* @param mergeFunc the user defined reduce function which should
* be commutative and associative and is used to combine the output
* of the map phase
*
* @return the resulting graph with canonical edges
*/
def convertToCanonicalEdges(
mergeFunc: (ED, ED) => ED = (e1, e2) => e1): Graph[VD, ED] = {
val newEdges =
graph.edges
.map {
case e if e.srcId < e.dstId => ((e.srcId, e.dstId), e.attr)
case e => ((e.dstId, e.srcId), e.attr)
}
.reduceByKey(mergeFunc)
.map(e => new Edge(e._1._1, e._1._2, e._2))
Graph(graph.vertices, newEdges)
}
/**
* Execute a Pregel-like iterative vertex-parallel abstraction. The
* user-defined vertex-program `vprog` is executed in parallel on
* each vertex receiving any inbound messages and computing a new
* value for the vertex. The `sendMsg` function is then invoked on
* all out-edges and is used to compute an optional message to the
* destination vertex. The `mergeMsg` function is a commutative
* associative function used to combine messages destined to the
* same vertex.
*
* On the first iteration all vertices receive the `initialMsg` and
* on subsequent iterations if a vertex does not receive a message
* then the vertex-program is not invoked.
*
* This function iterates until there are no remaining messages, or
* for `maxIterations` iterations.
*
* @tparam A the Pregel message type
*
* @param initialMsg the message each vertex will receive at the on
* the first iteration
*
* @param maxIterations the maximum number of iterations to run for
*
* @param activeDirection the direction of edges incident to a vertex that received a message in
* the previous round on which to run `sendMsg`. For example, if this is `EdgeDirection.Out`, only
* out-edges of vertices that received a message in the previous round will run.
*
* @param vprog the user-defined vertex program which runs on each
* vertex and receives the inbound message and computes a new vertex
* value. On the first iteration the vertex program is invoked on
* all vertices and is passed the default message. On subsequent
* iterations the vertex program is only invoked on those vertices
* that receive messages.
*
* @param sendMsg a user supplied function that is applied to out
* edges of vertices that received messages in the current
* iteration
*
* @param mergeMsg a user supplied function that takes two incoming
* messages of type A and merges them into a single message of type
* A. ''This function must be commutative and associative and
* ideally the size of A should not increase.''
*
* @return the resulting graph at the end of the computation
*
*/
def pregel[A: ClassTag](
initialMsg: A,
maxIterations: Int = Int.MaxValue,
activeDirection: EdgeDirection = EdgeDirection.Either)(
vprog: (VertexId, VD, A) => VD,
sendMsg: EdgeTriplet[VD, ED] => Iterator[(VertexId, A)],
mergeMsg: (A, A) => A)
: Graph[VD, ED] = {
Pregel(graph, initialMsg, maxIterations, activeDirection)(vprog, sendMsg, mergeMsg)
}
/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
*
* @see [[org.apache.spark.graphx.lib.PageRank$#runUntilConvergence]]
*/
def pageRank(tol: Double, resetProb: Double = 0.15): Graph[Double, Double] = {
PageRank.runUntilConvergence(graph, tol, resetProb)
}
/**
* Run personalized PageRank for a given vertex, such that all random walks
* are started relative to the source node.
*
* @see [[org.apache.spark.graphx.lib.PageRank$#runUntilConvergenceWithOptions]]
*/
def personalizedPageRank(src: VertexId, tol: Double,
resetProb: Double = 0.15) : Graph[Double, Double] = {
PageRank.runUntilConvergenceWithOptions(graph, tol, resetProb, Some(src))
}
/**
* Run Personalized PageRank for a fixed number of iterations with
* with all iterations originating at the source node
* returning a graph with vertex attributes
* containing the PageRank and edge attributes the normalized edge weight.
*
* @see [[org.apache.spark.graphx.lib.PageRank$#runWithOptions]]
*/
def staticPersonalizedPageRank(src: VertexId, numIter: Int,
resetProb: Double = 0.15) : Graph[Double, Double] = {
PageRank.runWithOptions(graph, numIter, resetProb, Some(src))
}
/**
* Run PageRank for a fixed number of iterations returning a graph with vertex attributes
* containing the PageRank and edge attributes the normalized edge weight.
*
* @see [[org.apache.spark.graphx.lib.PageRank$#run]]
*/
def staticPageRank(numIter: Int, resetProb: Double = 0.15): Graph[Double, Double] = {
PageRank.run(graph, numIter, resetProb)
}
/**
* Compute the connected component membership of each vertex and return a graph with the vertex
* value containing the lowest vertex id in the connected component containing that vertex.
*
* @see [[org.apache.spark.graphx.lib.ConnectedComponents$#run]]
*/
def connectedComponents(): Graph[VertexId, ED] = {
ConnectedComponents.run(graph)
}
/**
* Compute the number of triangles passing through each vertex.
*
* @see [[org.apache.spark.graphx.lib.TriangleCount$#run]]
*/
def triangleCount(): Graph[Int, ED] = {
TriangleCount.run(graph)
}
/**
* Compute the strongly connected component (SCC) of each vertex and return a graph with the
* vertex value containing the lowest vertex id in the SCC containing that vertex.
*
* @see [[org.apache.spark.graphx.lib.StronglyConnectedComponents$#run]]
*/
def stronglyConnectedComponents(numIter: Int): Graph[VertexId, ED] = {
StronglyConnectedComponents.run(graph, numIter)
}
} // end of GraphOps
RDD是Spark体系的核心,那么Graphx中引入了哪些新的RDD呢:
VertexRDD:VertexRDD[A]继承自RDD[(VertexID, A)]并且添加了额外的限制,那就是每个VertexID只能出现一次。此外,VertexRDD[A]代表了一组属性类型为A的顶点。在内部,这通过 保存顶点属性到一个可重复使用的hash-map数据结构来获得。所以,如果两个VertexRDDs从相同的基本VertexRDD获得(如通过filter或者mapValues),它们能够在固定的时间内连接 而不需要hash评价。为了利用这个索引数据结构,VertexRDD暴露了一下附加的功能,VertexRDD源码如下:
package org.apache.spark.graphx
import scala.reflect.ClassTag
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.spark.rdd._
import org.apache.spark.storage.StorageLevel
import org.apache.spark.graphx.impl.RoutingTablePartition
import org.apache.spark.graphx.impl.ShippableVertexPartition
import org.apache.spark.graphx.impl.VertexAttributeBlock
import org.apache.spark.graphx.impl.VertexRDDImpl
/**
* Extends `RDD[(VertexId, VD)]` by ensuring that there is only one entry for each vertex and by
* pre-indexing the entries for fast, efficient joins. Two VertexRDDs with the same index can be
* joined efficiently. All operations except [[reindex]] preserve the index. To construct a
* `VertexRDD`, use the [[org.apache.spark.graphx.VertexRDD$ VertexRDD object]].
*
* Additionally, stores routing information to enable joining the vertex attributes with an
* [[EdgeRDD]].
*
* @example Construct a `VertexRDD` from a plain RDD:
* {{{
* // Construct an initial vertex set
* val someData: RDD[(VertexId, SomeType)] = loadData(someFile)
* val vset = VertexRDD(someData)
* // If there were redundant values in someData we would use a reduceFunc
* val vset2 = VertexRDD(someData, reduceFunc)
* // Finally we can use the VertexRDD to index another dataset
* val otherData: RDD[(VertexId, OtherType)] = loadData(otherFile)
* val vset3 = vset2.innerJoin(otherData) { (vid, a, b) => b }
* // Now we can construct very fast joins between the two sets
* val vset4: VertexRDD[(SomeType, OtherType)] = vset.leftJoin(vset3)
* }}}
*
* @tparam VD the vertex attribute associated with each vertex in the set.
*/
abstract class VertexRDD[VD](
sc: SparkContext,
deps: Seq[Dependency[_]]) extends RDD[(VertexId, VD)](sc, deps) {
implicit protected def vdTag: ClassTag[VD]
private[graphx] def partitionsRDD: RDD[ShippableVertexPartition[VD]]
override protected def getPartitions: Array[Partition] = partitionsRDD.partitions
/**
* Provides the `RDD[(VertexId, VD)]` equivalent output.
*/
override def compute(part: Partition, context: TaskContext): Iterator[(VertexId, VD)] = {
firstParent[ShippableVertexPartition[VD]].iterator(part, context).next().iterator
}
/**
* Construct a new VertexRDD that is indexed by only the visible vertices. The resulting
* VertexRDD will be based on a different index and can no longer be quickly joined with this
* RDD.
*/
def reindex(): VertexRDD[VD]
/**
* Applies a function to each `VertexPartition` of this RDD and returns a new VertexRDD.
*/
private[graphx] def mapVertexPartitions[VD2: ClassTag](
f: ShippableVertexPartition[VD] => ShippableVertexPartition[VD2])
: VertexRDD[VD2]
/**
* Restricts the vertex set to the set of vertices satisfying the given predicate. This operation
* preserves the index for efficient joins with the original RDD, and it sets bits in the bitmask
* rather than allocating new memory.
*
* It is declared and defined here to allow refining the return type from `RDD[(VertexId, VD)]` to
* `VertexRDD[VD]`.
*
* @param pred the user defined predicate, which takes a tuple to conform to the
* `RDD[(VertexId, VD)]` interface
*/
override def filter(pred: Tuple2[VertexId, VD] => Boolean): VertexRDD[VD] =
this.mapVertexPartitions(_.filter(Function.untupled(pred)))
/**
* Maps each vertex attribute, preserving the index.
*
* @tparam VD2 the type returned by the map function
*
* @param f the function applied to each value in the RDD
* @return a new VertexRDD with values obtained by applying `f` to each of the entries in the
* original VertexRDD
*/
def mapValues[VD2: ClassTag](f: VD => VD2): VertexRDD[VD2]
/**
* Maps each vertex attribute, additionally supplying the vertex ID.
*
* @tparam VD2 the type returned by the map function
*
* @param f the function applied to each ID-value pair in the RDD
* @return a new VertexRDD with values obtained by applying `f` to each of the entries in the
* original VertexRDD. The resulting VertexRDD retains the same index.
*/
def mapValues[VD2: ClassTag](f: (VertexId, VD) => VD2): VertexRDD[VD2]
/**
* For each VertexId present in both `this` and `other`, minus will act as a set difference
* operation returning only those unique VertexId's present in `this`.
*
* @param other an RDD to run the set operation against
*/
def minus(other: RDD[(VertexId, VD)]): VertexRDD[VD]
/**
* For each VertexId present in both `this` and `other`, minus will act as a set difference
* operation returning only those unique VertexId's present in `this`.
*
* @param other a VertexRDD to run the set operation against
*/
def minus(other: VertexRDD[VD]): VertexRDD[VD]
/**
* For each vertex present in both `this` and `other`, `diff` returns only those vertices with
* differing values; for values that are different, keeps the values from `other`. This is
* only guaranteed to work if the VertexRDDs share a common ancestor.
*
* @param other the other RDD[(VertexId, VD)] with which to diff against.
*/
def diff(other: RDD[(VertexId, VD)]): VertexRDD[VD]
/**
* For each vertex present in both `this` and `other`, `diff` returns only those vertices with
* differing values; for values that are different, keeps the values from `other`. This is
* only guaranteed to work if the VertexRDDs share a common ancestor.
*
* @param other the other VertexRDD with which to diff against.
*/
def diff(other: VertexRDD[VD]): VertexRDD[VD]
/**
* Left joins this RDD with another VertexRDD with the same index. This function will fail if
* both VertexRDDs do not share the same index. The resulting vertex set contains an entry for
* each vertex in `this`.
* If `other` is missing any vertex in this VertexRDD, `f` is passed `None`.
*
* @tparam VD2 the attribute type of the other VertexRDD
* @tparam VD3 the attribute type of the resulting VertexRDD
*
* @param other the other VertexRDD with which to join.
* @param f the function mapping a vertex id and its attributes in this and the other vertex set
* to a new vertex attribute.
* @return a VertexRDD containing the results of `f`
*/
def leftZipJoin[VD2: ClassTag, VD3: ClassTag]
(other: VertexRDD[VD2])(f: (VertexId, VD, Option[VD2]) => VD3): VertexRDD[VD3]
/**
* Left joins this VertexRDD with an RDD containing vertex attribute pairs. If the other RDD is
* backed by a VertexRDD with the same index then the efficient [[leftZipJoin]] implementation is
* used. The resulting VertexRDD contains an entry for each vertex in `this`. If `other` is
* missing any vertex in this VertexRDD, `f` is passed `None`. If there are duplicates,
* the vertex is picked arbitrarily.
*
* @tparam VD2 the attribute type of the other VertexRDD
* @tparam VD3 the attribute type of the resulting VertexRDD
*
* @param other the other VertexRDD with which to join
* @param f the function mapping a vertex id and its attributes in this and the other vertex set
* to a new vertex attribute.
* @return a VertexRDD containing all the vertices in this VertexRDD with the attributes emitted
* by `f`.
*/
def leftJoin[VD2: ClassTag, VD3: ClassTag]
(other: RDD[(VertexId, VD2)])
(f: (VertexId, VD, Option[VD2]) => VD3)
: VertexRDD[VD3]
/**
* Efficiently inner joins this VertexRDD with another VertexRDD sharing the same index. See
* [[innerJoin]] for the behavior of the join.
*/
def innerZipJoin[U: ClassTag, VD2: ClassTag](other: VertexRDD[U])
(f: (VertexId, VD, U) => VD2): VertexRDD[VD2]
/**
* Inner joins this VertexRDD with an RDD containing vertex attribute pairs. If the other RDD is
* backed by a VertexRDD with the same index then the efficient [[innerZipJoin]] implementation
* is used.
*
* @param other an RDD containing vertices to join. If there are multiple entries for the same
* vertex, one is picked arbitrarily. Use [[aggregateUsingIndex]] to merge multiple entries.
* @param f the join function applied to corresponding values of `this` and `other`
* @return a VertexRDD co-indexed with `this`, containing only vertices that appear in both
* `this` and `other`, with values supplied by `f`
*/
def innerJoin[U: ClassTag, VD2: ClassTag](other: RDD[(VertexId, U)])
(f: (VertexId, VD, U) => VD2): VertexRDD[VD2]
/**
* Aggregates vertices in `messages` that have the same ids using `reduceFunc`, returning a
* VertexRDD co-indexed with `this`.
*
* @param messages an RDD containing messages to aggregate, where each message is a pair of its
* target vertex ID and the message data
* @param reduceFunc the associative aggregation function for merging messages to the same vertex
* @return a VertexRDD co-indexed with `this`, containing only vertices that received messages.
* For those vertices, their values are the result of applying `reduceFunc` to all received
* messages.
*/
def aggregateUsingIndex[VD2: ClassTag](
messages: RDD[(VertexId, VD2)], reduceFunc: (VD2, VD2) => VD2): VertexRDD[VD2]
/**
* Returns a new `VertexRDD` reflecting a reversal of all edge directions in the corresponding
* [[EdgeRDD]].
*/
def reverseRoutingTables(): VertexRDD[VD]
/** Prepares this VertexRDD for efficient joins with the given EdgeRDD. */
def withEdges(edges: EdgeRDD[_]): VertexRDD[VD]
/** Replaces the vertex partitions while preserving all other properties of the VertexRDD. */
private[graphx] def withPartitionsRDD[VD2: ClassTag](
partitionsRDD: RDD[ShippableVertexPartition[VD2]]): VertexRDD[VD2]
/**
* Changes the target storage level while preserving all other properties of the
* VertexRDD. Operations on the returned VertexRDD will preserve this storage level.
*
* This does not actually trigger a cache; to do this, call
* [[org.apache.spark.graphx.VertexRDD#cache]] on the returned VertexRDD.
*/
private[graphx] def withTargetStorageLevel(
targetStorageLevel: StorageLevel): VertexRDD[VD]
/** Generates an RDD of vertex attributes suitable for shipping to the edge partitions. */
private[graphx] def shipVertexAttributes(
shipSrc: Boolean, shipDst: Boolean): RDD[(PartitionID, VertexAttributeBlock[VD])]
/** Generates an RDD of vertex IDs suitable for shipping to the edge partitions. */
private[graphx] def shipVertexIds(): RDD[(PartitionID, Array[VertexId])]
} // end of VertexRDD
abstract class EdgeRDD[ED](
sc: SparkContext,
deps: Seq[Dependency[_]]) extends RDD[Edge[ED]](sc, deps) {
// scalastyle:off structural.type
private[graphx] def partitionsRDD: RDD[(PartitionID, EdgePartition[ED, VD])] forSome { type VD }
// scalastyle:on structural.type
override protected def getPartitions: Array[Partition] = partitionsRDD.partitions
override def compute(part: Partition, context: TaskContext): Iterator[Edge[ED]] = {
val p = firstParent[(PartitionID, EdgePartition[ED, _])].iterator(part, context)
if (p.hasNext) {
p.next()._2.iterator.map(_.copy())
} else {
Iterator.empty
}
}
/**
* Map the values in an edge partitioning preserving the structure but changing the values.
*
* @tparam ED2 the new edge value type
* @param f the function from an edge to a new edge value
* @return a new EdgeRDD containing the new edge values
*/
def mapValues[ED2: ClassTag](f: Edge[ED] => ED2): EdgeRDD[ED2]
/**
* Reverse all the edges in this RDD.
*
* @return a new EdgeRDD containing all the edges reversed
*/
def reverse: EdgeRDD[ED]
/**
* Inner joins this EdgeRDD with another EdgeRDD, assuming both are partitioned using the same
* [[PartitionStrategy]].
*
* @param other the EdgeRDD to join with
* @param f the join function applied to corresponding values of `this` and `other`
* @return a new EdgeRDD containing only edges that appear in both `this` and `other`,
* with values supplied by `f`
*/
def innerJoin[ED2: ClassTag, ED3: ClassTag]
(other: EdgeRDD[ED2])
(f: (VertexId, VertexId, ED, ED2) => ED3): EdgeRDD[ED3]
/**
* Changes the target storage level while preserving all other properties of the
* EdgeRDD. Operations on the returned EdgeRDD will preserve this storage level.
*
* This does not actually trigger a cache; to do this, call
* [[org.apache.spark.graphx.EdgeRDD#cache]] on the returned EdgeRDD.
*/
private[graphx] def withTargetStorageLevel(targetStorageLevel: StorageLevel): EdgeRDD[ED]
}
较之EdgeRdd,VertexRDD更为重要,其上的操作也很多,主要集中于Vertex之上属性的合并,说到合并就不得不扯到关系代数和集合论,所以在VertexRdd中能看到许多类似于sql中的术语,如
至于leftJoin, innerJoin, outerJoin的区别,建议谷歌一下,不再赘述,以上源代码里也有详细解释。
Graphx在生产场景的应用
在大数据的环境下,如果图很巨大,表示顶点和边的数据不足以放在一个文件中怎么办? 用HDFS。
一般来说,我们会将所有与顶点相关的内容保存在一个文件中vertexFile,所有与边相关的信息保存在另一个文件中edgeFile。
生成某一个具体的图时,用edge就可以表示图中顶点的关联关系,同时图的结构也表示出来了。
生成图
graphLoader是graphx中专门用于图的加载和生成,最重要的函数就是edgeListFile,源码如下:
package org.apache.spark.graphx
import org.apache.spark.storage.StorageLevel
import org.apache.spark.{Logging, SparkContext}
import org.apache.spark.graphx.impl.{EdgePartitionBuilder, GraphImpl}
/**
* Provides utilities for loading [[Graph]]s from files.
*/
object GraphLoader extends Logging {
/**
* Loads a graph from an edge list formatted file where each line contains two integers: a source
* id and a target id. Skips lines that begin with `#`.
*
* If desired the edges can be automatically oriented in the positive
* direction (source Id < target Id) by setting `canonicalOrientation` to
* true.
*
* @example Loads a file in the following format:
* {{{
* # Comment Line
* # Source Id <\t> Target Id
* 1 -5
* 1 2
* 2 7
* 1 8
* }}}
*
* @param sc SparkContext
* @param path the path to the file (e.g., /home/data/file or hdfs://file)
* @param canonicalOrientation whether to orient edges in the positive
* direction
* @param numEdgePartitions the number of partitions for the edge RDD
* Setting this value to -1 will use the default parallelism.
* @param edgeStorageLevel the desired storage level for the edge partitions
* @param vertexStorageLevel the desired storage level for the vertex partitions
*/
def edgeListFile(
sc: SparkContext,
path: String,
canonicalOrientation: Boolean = false,
numEdgePartitions: Int = -1,
edgeStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY,
vertexStorageLevel: StorageLevel = StorageLevel.MEMORY_ONLY)
: Graph[Int, Int] =
{
val startTime = System.currentTimeMillis
// Parse the edge data table directly into edge partitions
val lines =
if (numEdgePartitions > 0) {
sc.textFile(path, numEdgePartitions).coalesce(numEdgePartitions)
} else {
sc.textFile(path)
}
val edges = lines.mapPartitionsWithIndex { (pid, iter) =>
val builder = new EdgePartitionBuilder[Int, Int]
iter.foreach { line =>
if (!line.isEmpty && line(0) != '#') {
val lineArray = line.split("\\s+")
if (lineArray.length < 2) {
throw new IllegalArgumentException("Invalid line: " + line)
}
val srcId = lineArray(0).toLong
val dstId = lineArray(1).toLong
if (canonicalOrientation && srcId > dstId) {
builder.add(dstId, srcId, 1)
} else {
builder.add(srcId, dstId, 1)
}
}
}
Iterator((pid, builder.toEdgePartition))
}.persist(edgeStorageLevel).setName("GraphLoader.edgeListFile - edges (%s)".format(path))
edges.count()
logInfo("It took %d ms to load the edges".format(System.currentTimeMillis - startTime))
GraphImpl.fromEdgePartitions(edges, defaultVertexAttr = 1, edgeStorageLevel = edgeStorageLevel,
vertexStorageLevel = vertexStorageLevel)
} // end of edgeListFile
}
PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度。它由Larry Page 和 Sergey Brin在20世纪90年代后期发明。PageRank实现了将链接价值概念作为排名因素。PageRank将对页面的链接看成投票,指示了重要性。
分析步骤用文字表述如下:
所有网页之间的连接用矩阵A来表示,所有网页排名用B来表示。
网页的排名计算最终抽象为矩阵相乘,于是可以联系到矩阵相乘可以并行化处理,spark这里借助的是Prege模型,PageRank里面定义的函数源码如下:
object PageRank extends Logging {
/**
* Run PageRank for a fixed number of iterations returning a graph
* with vertex attributes containing the PageRank and edge
* attributes the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param numIter the number of iterations of PageRank to run
* @param resetProb the random reset probability (alpha)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def run[VD: ClassTag, ED: ClassTag](graph: Graph[VD, ED], numIter: Int,
resetProb: Double = 0.15): Graph[Double, Double] =
{
runWithOptions(graph, numIter, resetProb)
}
/**
* Run PageRank for a fixed number of iterations returning a graph
* with vertex attributes containing the PageRank and edge
* attributes the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param numIter the number of iterations of PageRank to run
* @param resetProb the random reset probability (alpha)
* @param srcId the source vertex for a Personalized Page Rank (optional)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*
*/
def runWithOptions[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], numIter: Int, resetProb: Double = 0.15,
srcId: Option[VertexId] = None): Graph[Double, Double] =
{
val personalized = srcId isDefined
val src: VertexId = srcId.getOrElse(-1L)
// Initialize the PageRank graph with each edge attribute having
// weight 1/outDegree and each vertex with attribute resetProb.
// When running personalized pagerank, only the source vertex
// has an attribute resetProb. All others are set to 0.
var rankGraph: Graph[Double, Double] = graph
// Associate the degree with each vertex
.outerJoinVertices(graph.outDegrees) { (vid, vdata, deg) => deg.getOrElse(0) }
// Set the weight on the edges based on the degree
.mapTriplets( e => 1.0 / e.srcAttr, TripletFields.Src )
// Set the vertex attributes to the initial pagerank values
.mapVertices { (id, attr) =>
if (!(id != src && personalized)) resetProb else 0.0
}
def delta(u: VertexId, v: VertexId): Double = { if (u == v) 1.0 else 0.0 }
var iteration = 0
var prevRankGraph: Graph[Double, Double] = null
while (iteration < numIter) {
rankGraph.cache()
// Compute the outgoing rank contributions of each vertex, perform local preaggregation, and
// do the final aggregation at the receiving vertices. Requires a shuffle for aggregation.
val rankUpdates = rankGraph.aggregateMessages[Double](
ctx => ctx.sendToDst(ctx.srcAttr * ctx.attr), _ + _, TripletFields.Src)
// Apply the final rank updates to get the new ranks, using join to preserve ranks of vertices
// that didn't receive a message. Requires a shuffle for broadcasting updated ranks to the
// edge partitions.
prevRankGraph = rankGraph
val rPrb = if (personalized) {
(src: VertexId , id: VertexId) => resetProb * delta(src, id)
} else {
(src: VertexId, id: VertexId) => resetProb
}
rankGraph = rankGraph.joinVertices(rankUpdates) {
(id, oldRank, msgSum) => rPrb(src, id) + (1.0 - resetProb) * msgSum
}.cache()
rankGraph.edges.foreachPartition(x => {}) // also materializes rankGraph.vertices
logInfo(s"PageRank finished iteration $iteration.")
prevRankGraph.vertices.unpersist(false)
prevRankGraph.edges.unpersist(false)
iteration += 1
}
rankGraph
}
/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param tol the tolerance allowed at convergence (smaller => more accurate).
* @param resetProb the random reset probability (alpha)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def runUntilConvergence[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15): Graph[Double, Double] =
{
runUntilConvergenceWithOptions(graph, tol, resetProb)
}
/**
* Run a dynamic version of PageRank returning a graph with vertex attributes containing the
* PageRank and edge attributes containing the normalized edge weight.
*
* @tparam VD the original vertex attribute (not used)
* @tparam ED the original edge attribute (not used)
*
* @param graph the graph on which to compute PageRank
* @param tol the tolerance allowed at convergence (smaller => more accurate).
* @param resetProb the random reset probability (alpha)
* @param srcId the source vertex for a Personalized Page Rank (optional)
*
* @return the graph containing with each vertex containing the PageRank and each edge
* containing the normalized weight.
*/
def runUntilConvergenceWithOptions[VD: ClassTag, ED: ClassTag](
graph: Graph[VD, ED], tol: Double, resetProb: Double = 0.15,
srcId: Option[VertexId] = None): Graph[Double, Double] =
{
val personalized = srcId.isDefined
val src: VertexId = srcId.getOrElse(-1L)
// Initialize the pagerankGraph with each edge attribute
// having weight 1/outDegree and each vertex with attribute 1.0.
val pagerankGraph: Graph[(Double, Double), Double] = graph
// Associate the degree with each vertex
.outerJoinVertices(graph.outDegrees) {
(vid, vdata, deg) => deg.getOrElse(0)
}
// Set the weight on the edges based on the degree
.mapTriplets( e => 1.0 / e.srcAttr )
// Set the vertex attributes to (initalPR, delta = 0)
.mapVertices { (id, attr) =>
if (id == src) (resetProb, Double.NegativeInfinity) else (0.0, 0.0)
}
.cache()
// Define the three functions needed to implement PageRank in the GraphX
// version of Pregel
def vertexProgram(id: VertexId, attr: (Double, Double), msgSum: Double): (Double, Double) = {
val (oldPR, lastDelta) = attr
val newPR = oldPR + (1.0 - resetProb) * msgSum
(newPR, newPR - oldPR)
}
def personalizedVertexProgram(id: VertexId, attr: (Double, Double),
msgSum: Double): (Double, Double) = {
val (oldPR, lastDelta) = attr
var teleport = oldPR
val delta = if (src==id) 1.0 else 0.0
teleport = oldPR*delta
val newPR = teleport + (1.0 - resetProb) * msgSum
val newDelta = if (lastDelta == Double.NegativeInfinity) newPR else newPR - oldPR
(newPR, newDelta)
}
def sendMessage(edge: EdgeTriplet[(Double, Double), Double]) = {
if (edge.srcAttr._2 > tol) {
Iterator((edge.dstId, edge.srcAttr._2 * edge.attr))
} else {
Iterator.empty
}
}
def messageCombiner(a: Double, b: Double): Double = a + b
// The initial message received by all vertices in PageRank
val initialMessage = if (personalized) 0.0 else resetProb / (1.0 - resetProb)
// Execute a dynamic version of Pregel.
val vp = if (personalized) {
(id: VertexId, attr: (Double, Double), msgSum: Double) =>
personalizedVertexProgram(id, attr, msgSum)
} else {
(id: VertexId, attr: (Double, Double), msgSum: Double) =>
vertexProgram(id, attr, msgSum)
}
Pregel(pagerankGraph, initialMessage, activeDirection = EdgeDirection.Out)(
vp, sendMessage, messageCombiner)
.mapVertices((vid, attr) => attr._1)
} // end of deltaPageRank